Loading...
HomeMy WebLinkAbout260-17 RESOLUTION113 West Mountain Street Fayetteville, AR 72701 (479) 575-8323 Resolution: 260-17 File Number: 2017-0594 2017 WATER MASTER PLAN UPDATE: A RESOLUTION TO ACCEPT AND ADOPT THE 2017 WATER MASTER PLAN UPDATE WHEREAS, the City Council passed Resolution No. 116-16 on June 7, 2016, authorizing a contract with McGoodwin Williams and Yates to develop a Water Master Plan Update; and WHEREAS, the 2017 update to the City's Water Master Plan complies with the Arkansas Department of Health regulation requiring long range planning and also serves as a planning tool for future Capital Improvement Program projects. NOW, THEREFORE, BE IT RESOLVED BY THE CITY COUNCIL OF THE CITY OF FAYETTEVILLE, ARKANSAS: Section 1: That the City Council of the City of Fayetteville, Arkansas hereby adopts the 2017 Water Master Plan Update, a copy of which is attached to this Resolution. PASSED and APPROVED on 12/5/2017 Attest: Page 1 Sondra E. Smith, City Clerk Treasurer . (:,%I Y O wdG f f AYETlEVI!-! Z 61, Printed on 1216117 City of Fayetteville, Arkansas 113 West Mountain Street Fayetteville, AR 72701 (479) 575-8323 Text File File Number: 2017-0594 Agenda Date: 12/5/2017 Version: 1 Status: Passed In Control: City Council Meeting File Type: Resolution Agenda Number: C. 5 2017 WATER MASTER PLAN UPDATE: A RESOLUTION TO ACCEPT AND ADOPT THE 2017 WATER MASTER PLAN UPDATE WHEREAS, the City Council passed Resolution No. 116-16 on June 7, 2016, authorizing a contract with McGoodwin Williams and Yates to develop a Water Master Plan Update; and WHEREAS, the 2017 update to the City's Water Master Plan complies with the Arkansas Department of Health regulation requiring long range planning and also serves as a planning tool for future Capital Improvement Program projects. NOW, THEREFORE, BE IT RESOLVED BY THE CITY COUNCIL OF THE CITY OF FAYETTEVILLE, ARKANSAS: Section 1: That the City Council of the City of Fayetteville, Arkansas hereby adopts the 2017 Water Master Plan Update, a copy of which is attached to this Resolution. City of Fayetteville, Arkansas Page 1 Printed on 12/6/2017 Tim Nyander Submitted By City of Fayetteville Staff Review Form 2017-0594 Legistar File ID 12/5/2017 City Council Meeting Date - Agenda Item Only N/A for Non -Agenda Item 11/15/2017 Utilities Director / Utilities Department Submitted Date Division / Department Action Recommendation: Staff recommends a resolution to accept and adopt the 2017 Water Master Plan Update completed by McGoodwin, Williams and Yates, Inc. Budget Impact: N/A N/A Account Number N/A Project Number Budgeted Item? NA Does item have a cost? NA Budget Adjustment Attached? NA Previous Ordinance or Resolution # Original Contract Number: Comments: Current Budget Funds Obligated Current Balance Item Cost Budget Adjustment Remaining Budget Fund N/A Project Title $ J Approval Date: V20140710 CITY OF FAYETTEVILLE ARKANSAS MEETING OF DECEMBER 5, 2017 TO: Mayor and City Council THRU: Don Marr, Chief of Staff Water & Sewer Committee FROM: Tim Nyander, Utilities Director DATE: November 16, 2017 SUBJECT: Water Master Plan Update CITY COUNCIL MEMO RECOMMENDATION: Staff recommends a resolution to accept and adopt the Water Master Plan Update. BACKGROUND: McGoodwin Williams and Yates (MWY) was selected in a formal engineering selection committee meeting on April 1, 2016 (RFQ 16-01) to provide a Water Master Plan Update (that agreement also included engineering services for a Dinsmore Trail Waterline Upgrade). Resolution 116-16 was passed on June 7, 2016 that approved the Water Master Plan Update with MWY. DISCUSSION: The Water Master Plan Update provides a planning tool for our future Capital Improvement Program projects. Additionally, Arkansas Department of Health Regulations include the requirement for long range planning and requested five (5) year updates. The previous update to the Water Master Plan was done in 2011 (by MWY). McGoodwin, Williams and Yates was given approximately 1 year to complete the Water Master Plan Update. This proposed resolution will accept and adopt the Water Master Plan Update completed by McGoodwin, Williams and Yates. The plan was presented to the Water, Sewer and Solid Waste Committee on September 12, 2017 and October 10, 2017. The committee voted in favor of forwarding the item to the City Council with a recommendation for approval on November 14, 2017. The full version of the 2017 Water Master Plan Update with full-size 11" by 17" maps and tables is available at fayetteville-ar.gov/3355. Mailing Address: 113 W. Mountain Street www.fayetteville-ar.gov Fayetteville, AR 72701 BUDGET/STAFF IMPACT: The Water Master Plan Update was paid for out of the Water System Rehabilitation project in 2016. Attachments: Resolution 116-16 Water Master Plan Update 113 West Mountain Street Fayetteville, AR 72701 (479)575-8323 Resolution: 116-16 File Number: 2016-0223 MCGOODWIN, WILLIAMS AND YATES, INC.: A RESOLUTION TO APPROVE A PROFESSIONAL ENGINEERING SERVICES AGREEMENT WITH MCGOODWIN, WILLIAMS AND YATES, INC. 1N AN AMOUNT NOT TO EXCEED $182,077.00 FOR A WATER MASTER PLAN UPDATE AND FOR DESIGN, BIDDING AND CONSTRUCTION PHASE SERVICES FOR THE REPLACEMENT OF APPROXIMATELY 3,000 FEET OF WATER LINE ON DINSMORE TRAIL. BE IT RESOLVED BY THE CITY COUNCIL OF THE CITY OF FAYETTEVILLE, ARKANSAS: Section 1: That the City Council of the City of Fayetteville, Arkansas hereby approves a professional engineering services agreement, a copy of which is attached to this Resolution, with McGoodwin, Williams and Yates, Inc., pursuant to RFQ # 16-01, in an amount not to exceed $182,077.00 for a Water Master Plan update and for design, bidding and construction phase services for the replacement of approximately 3,000 feet of water line on Dinsmore Trail. �rJilrrfrrr PASSED and APPROVED on 6/7/2016 rr IIA Y- 11, x!1•..5' r.,•. Attest: Sondra E, Smith, City Clerk Treasurer Page I Printed on 618116 CITY OF FAYETTEVILLE ARKANSAS ware P fly,' 41 ft�. 04 a as * r : d RX All man Nag f I I S--4�.o D Alm 4 0 _ y CITY OF r FAYETTEVILLE ARKANSAS t � tr -, r E M C041=0",\ Submitted by McGoodwin Williams & Yates 302 E. Millsap Road Fayetteville, Arkansas 72703 PH: 479-443-3404 FX: 479-443-4340 www.mwyusa.com [F3 .F MWY Project No. PY0363 7° x.kK4,�.l�j-n ,duly 2017 4 ��.>n►�du�rarr�nr,�i� Y A6 K SA olid Yats� iio z No. 192 SO H11111% 0 WGIVAlffe PROFESSIONAL ENGINEEP cin No.9240 s5), SECTION TABLE OF CONTENTS PAGE EXECUTIVESUMMARY.................................................................................................................. ES - 1 1.0 INTRODUCTION.......................................................................................................................... I — 1 1.1 Scope of Services.................................................................................................................... 1 — 1 2.0 PLANNING AND LAND USE PLAN.......................................................................................... 2 — 1 3.0 HISTORICAL AND PROJECTED POPULATION AND WATER USE .................................... 3 — 1 3.1 Historical and Projected Population................................................................................... 3 — 1 3.2 Historical Water Use ..................................................................................... 3-3 3.3 Projected Water Use......................................................................................................:........ 3-4 3.4 Projected Water Use by Growth Areas .............. - 4.0 EXISTING WATER DISTRIBUTION AND STORAGE SYSTEM ............................................ 4-1 5.0 DEVELOPMENT AND VERIFICATION OF THE HYDRAULIC MODEL .............................. 5-1 5.1 Calibration and Verification of Model.............................................................................. — ..... S 1 5.2 Infrastructure Included in Model ...................... .............................. .................. ............ ......... 5-4 6.0 DESIGN CRITERIA 6.1 Transmission Capacity......................................................_......_...................................... 6 — 1 6.2 System Storage ........... ............ ................ ......... ................. .._......... ............... -- ......... ....... ....... 6 — 1 6.3 Fire Protection...........................................,.............................._............................................. 6-2 6.4 Low Pressure Analysis ................................. ................................... ............... ............... ......... 6-3 6.5 Water Quality Analysis ...................... ............. .......:............ ............. ---- ......... .................. .. 6 — 3 6.6 Development Water Transmission Main Spacing ....... ......... ...... —......... :..... ........ ................ — 6 — 3 7.0 SYSTEM ANALYSIS AND RECOMMENDATIONS ................................................ — 7.1 Existing Distribution System Analysis — 7.2 Phase I Improvements, 2017 — 2022 .................. ................................................. ..,............... .. 7 — 7 7.3 Phase II Improvements, 2022 — 20277-26 7.4 Phase III Improvements, 2027 — 2037.. ........ --...................................................................7-28 7.5 Automated Valve Analysis..................................................... ...................... . 7 — 32 7.6 General Recommendations................................................................................................... 7-34 8.0 OPINION OF PROBABLE COST................................................................................................. 8 — 1 Fayetteville Master Plan Study TOC - i APPENDICES APPENDIXA. ... ................................. -- ........................................ ........ —Distribution Improvements Map APPENDIX B............................................................................... Fayetteville Usage Records, 1975 — 2016 APPENDIXC. . ................................................................................................................. Fire Flow Analysis Cl........................................................................................................................................... Existing C2........................ ...................................................................................................................... 2022 C3....... ............... ................... .................. ..................................................................................... 2027 C4.......................................................................................................................------------............ 2037 APPENDIX D............................................................................................................ Low Pressure Analysis APPENDIX E..................................................................................................... Chlorine Residual Analysis APPENDIX F— .......................... —.— ........... ......................................................... Residence Time Analysis APPENDIX G........................................................................................ Detailed Opinion of Probable Costs APPENDIX H. ................................. Fayetteville System School/Hospital Fire Flow Analysis Calculations APPENDIX I............................................................................. ........... ...,... .... Technical Memorandums TABLES 3.1.1 Historical and Projected Population........................................................................................... 3 — 1 3.2.1 Historical Water Usage................................................................................_............................. 3-3 3.1.1 3.3.1 Average Day, Maximum Day, and M/A Design Values........................................................... 3-4 Fayetteville Historical Usage 1980 to 2016 ......................... 3.4.1 Average & Maximum Day Projected Water Use....................................................................... 3-7 — 4.1 Distribution System Piping...................................................................................................... 4-15 4.1 5.1.1 Steady State Field Pressure Test Results ....................................... ........... .......- 4.2 — 5.1.2 Field Flow Test Results...........................................................................................................,. 5 — 3 5.2.1 Distribution System Pipe Lengths.............................................................................................. 5-5 7.1.2 6.2.1 ................. Recommended Water Storage Requirements ................................................ .......... 6-2 Township Pressure Plane Improvements ................................... .............................. 6.3.1 Fire Flow Requirements............................................................................................................. 6-2 8.1 Summary of Opinion of Probable Costs — Phase I Improvements 2017 - 2022 ........................ 8-2 7.2.4 8.2 Summary of Opinion of Probable Costs — Phase II Improvements 2022 - 2027 ....................... 8-3 Benson Mountain Pressure Plane Improvements...— ................................. :..................... ........ 7-18 8.3 Summary of Opinion of Probable Costs — Phase III Improvements 2027 - 2037........ .............. 8-4 FIGURES 2.1 Future Planned Land Use ............................. ......... — 2.2 Master Plan Growth Areas .................... — 3.1.1 Historical and Projected Population ........... ............................... .................................. ............... 3 — 2 3.2.1 Fayetteville Historical Usage 1980 to 2016 ......................... — 3.3.1 Historical and Projected Water Usage ............. ............... ........................................ — 3.4.1 Growth Area Percentages ....: ..... ........... ..... .................................... ....... ........ .... --- ...........,..... 3-8 4.1 Existing Distribution Schematic ......... .............. ................. ......... .............. ..,.............. ....... ,...... ..4 —4 4.2 Water System Pressure Planes............................,......,......,..............,............---........................ 4-16 7.1.1 DBP Map., ........... ....................... ............... ...... 4-- ........ ... -- ..... .... — ......................... ... 7-5 7.1.2 TTHM Annual Averages........................................................................................................... 7-6 7.1.2 HAAS Annual Averages............................................................................................................ 7-6 7.2.1 Township Pressure Plane Improvements ................................... .............................. — 7.2.2 Township Pressure Plane Waterline Improvements.................................................................. 7-9 7.2.3 Miscellaneous East Fayetteville Improvements....................................................................... 7-13 7.2.4 Future Gulley and Goshen Pressure Plane Boundaries............................................................ 7-14 7.2.5 Benson Mountain Pressure Plane Improvements...— ................................. :..................... ........ 7-18 7.2.6 Kessler Mountain Pump Station.............................................................................................. 7-23 7.4.1 Proposed 48 -inch Transmission Line from BWD West Site ,......... ........................................ 7-29 Fayetteville Master Plan Study TOC - ii EXECUTIVE SUMMARY Introduction and Scope of Work In 2016, the City of Fayetteville authorized McGoodwin, Williams & Yates (MWY) to conduct a Master Plan Study for the water distribution system and recommend capital improvements for future growth. The study includes population and usage projections, water quality analyses, fire flow analyses and an evaluation of additional water transmission supply lines from Beaver Water District. The report details immediate and long term recommendations for improvements to the Fayetteville water distribution system to meet the growing population and demands for the next 20 -years. Specifically, recommendations include planning -level scopes, schematic maps and opinions of probable costs for recommended CIP projects for the following design horizons: Immediate improvements ■ Phase I (Present - 2022) Future Improvements • Phase 2 (2022 - 2027) • Phase 3 (2027 - 2037) Planning and Growth Areas A review of recent growth in the City of Fayetteville reveals that most growth and expansion of commercial and residential subdivisions have been in the western and eastern regions of the planning area. The city limits of Springdale, Farmington and Greenland have prevented any extensive growth to the north, south and southwest where the planning area boundary and the city limit lines are very nearly the same. The current Planning Area consists of approximately 56,700 acres with the Fayetteville city limit encompassing approximately 34,100 acres within the Planning Area boundary. For purposes of this study, the planning area was divided into six distinct growth areas. Those areas are designated as the West, Northwest, Northeast/East, Southeast, Existing Service Area and Downtown. The Downtown growth area is comprised of the Inner and Outer Core, which are defined in Fayetteville's City Plan 2030. The Existing Service growth area includes all projected system growth outside of the other growth areas discussed. Section 2.0 of the report contains a figure illustrating the boundaries of the growth areas. The City of Fayetteville currently supplies bulk sale water to several cities/rural water districts that are outside of the current planning boundary. These include the City of West Fork, City of Elkins, Mount Olive Water Association and, on request, the Washington Water Authority. Fayetteville Master Plan Study ES -1 Projected Population and Water Use Based on historical census data and projected trend lines, the population of Fayetteville is projected to exceed 138,000 by the design year of 2037. However, this projection is for the population located only within the Fayetteville city limits and not for the actual population served by the City's water service boundary. Currently, Fayetteville supplies water to the bulk sale customers West Fork, Elkins and the Mt. Olive Water Association as well as Goshen, Greenland, Farmington and portions of Washington County (i.e. Wheeler, etc.) and the City of Johnson. Adding these areas would increase the projected population served by the City of Fayetteville to approximately 170,000 by the year 2037. To project water usage, historical average day and maximum day usage was analyzed from 1990 through 2016. Average -day water demands for the design horizons were then projected Using a trend line analysis. Based on the historical usage data, a maximum day to average day ratio of 2.0 was used to predict probable maximum day demands. The table below summarizes projected average day and maximum day demands for the growth areas and bulk sale customers for each design horizon. The amount of usage for each growth area was determined by applying a percentage of the projected increased usage for each design horizon. The percentage assigned to each growth area was determined based on previous studies, vacant property and topography in each growth region as well as historical and anticipated growth for these areas. Average & Maximum Day Projected Water Use 6row'th Area/ Bulk Sales 4v_erpqjDay 2022 r27 - 2037 (MGD) (PG D) (MGD) Water Service Area Maximum Day_ 2022r (VGD) (MGP) (MGD) Uvater Service Area Existing Fa etteville System 14.15 14.15 14.15 18.84 18.84 18.84 Growth Areas 'Downtown (Inner & Outer Core) 0.32 0.49 0.87 1.74 2.08 2.86 Existing Service Area 0.12 0.17 0.31 0.63 0.76 1.04 West 1.00 1.51 2.69 5.36 6.43 8.85 Northwest 0.74 1.12 1.98 3.94 4.73 6.51 Northeast and East 0.35 0.54 0.95 1.89 2.26 3.12 Southeast 0.41 0.62 1.10 2.21 2.65 3.64 Bulk Sales West Fork 0.19 0.21 0.24 0.27 0.28 0.33 Mt. Olive Water Association 0.19 0.22 0.28 1 0.22 0.25 0.31 Elkins 0.21 0.27 0.45 0.26 0.33 0.54 Total (MGD) 17.68 19.30 23.02 35.36 38.61 46.04 Fayetteville Master Plan Study ES -2 System Analysis and Recommendations In the study of the Fayetteville distribution system, MWY's initial step was to analyze the existing system to discover any deficiencies that may exist using the updated Fayetteville hydraulic water model. MWY then created a 20 -year master plan for system improvements necessary to meet the needs of the City. The model was operated utilizing the existing and projected system demands and took into consideration the operational requirements unique to the Fayetteville system. The first step of the Master Plan consisted of modifying the previous hydraulic model to reflect the current distribution system. The system was modeled using InfoWater by Innovyze, Inc. The updated model included approximately 13,850 pipe segments and 12,456 nodes, representing 15 tanks, 9 booster stations, and over 700 miles of water piping. Once the model infrastructure was completed, existing average and maximum day demands were placed into the model at the approximate location where the demands occur in the system through a process called geocoding. Using Are View version 10.4 software, geocoding was accomplished by obtaining individual account usage files from city water billing records and matching them to the exact locations in the City's street centerline geo- reference file. The model was then calibrated successfully by comparing actual pressure and flow data measured within the system to predicted model results. At the end, the average deviation of modeled pressures from field pressures was approximately three (3) percent, providing confidence of modeled results in the later analyses. Using the water model, the existing system was analyzed to determine areas with low pressures and/or marginal fire flow capabilities, and a water quality analysis was performed to predict areas with low chlorine residuals and/or significant water residence times. Growth projections were added to the model and recommended system improvements were then determined for each of the three design horizons. According to the analysis, the construction of the recommended improvements will enable the city to supply domestic and fire flow demands for the projected growth during the design horizons based on the projected growth patterns. If growth patterns change over time, or if overall growth accelerates, the required timing of the improvements may change. Recommended improvements by phase along with a summary of the opinion of probable costs are itemized in the tables below. The improvement costs include valves, fittings, fire hydrants, street crossings or borings and an estimation of rock that may be encountered during the construction phase. The opinion of probable cost is based on current costs of similar construction and is provided for planning and budgetary purposes. Actual costs may vary depending upon actual bids received. The costs shown for all phases reflect present values (2017 dollars) and include an estimate of construction contingencies and engineering fees. The estimates do not include right-of-way expenses, legal fees or acquisition of permits. Fayetteville Master Plan Study ES -3 The improvements for each design phase are described in greater detail in the body of the report and shown in the Distribution Improvements Map located in Appendix A. Appendix G contains a more detailed itemization of the calculation of probable costs. Line/item Approximate Pipe Approximate Construction Engineering Total No. Length Diameter Cost per LF " Cost & Contingencies Project Cost $ 162,500.00 (LF) (in) $ 2,000,000.00 (Rounded) (251/4 PS -1 Cw r. cn.,nra n.a.Ilo I.n nrna.&m&nie EF -1 3,800 18 $ 143.95 $ 550,000.00 $ 137,500.00 $ 687,500.00 EF -2 4,600 18 $ 142.88 $ 660,000.00 $ 165,000.00 $ 825,000.00 EF -3 3,030 8 $ 41.72 $ 130,000.00 $ 32,500.00 $ 162,500.00 Tank -1 0.75 -MG Elevated Tank $ 2,000,000.00 $ 500,000.00 $ 2,500,000.00 PS -1 East FayetteWle Pump Station $ 450,000.00 $ 112,500.00 $ 562,500.00 AV -1 Altitude Vale & Vault (E. Paul Pray Dr.) $ 70,000.00 $ 17,500.0D $ 87,500.00 Subtotal East Fayetteville Improvements 41 s,uou,uuu.uu a Ss,uuu.vv a Y,ocaluw.UV T.....w wl.iw Iw.wrn,rn w.nn.c. T-1 400 8 $ 57.50 $ 23,000.00 $ 5,750.00 $ 28,750.00 T-2 570 8 $ 57.37 $ 33,000.00 1 $ 8,250.001 $ 41,250.00 Tank -2 0.25 -MG Elevated Tank $ 1,210,000.00 $ 302,500.00 $ 1.512,500.00 PS -2 Township Pump Stalion $ 250,000.00 1 $ 62.500.09J $ 312,500.00 Subtotal Township Improvements 6,260 12 Z. Jra,vuu.vu a I,oao,wv.vv Benson Mountain Improvements 1-3 200 12 $ 95.00 $ 19,000.00 B-1 1 2,200 1 4 $ 12.59 $ 28,000.00 $ 7,000.00 $ 35,000.00 PS -3 Benson Mountain Pump Station $ 215,000.00 $ 53,750.00 $ 268,750.00 Subtotal Benson Mountain Improvements $ 243,000.00 $ 60,750,00 $ 303,750.00 Major Water Line Improvements (16" Pipes and Greater) $ 8,250.00 $ 41,250.00 1-7 25 12 1.1 5,304 18 $ 158.11 is 840,000.00 $ 210.000.00 $ 1,050,000.00 Subtotal Major Waterline Improvements $ 840,000.00 $ 210,000,D0 $ 1,050,000.00 ■A:ww. Nlw.w. 1 inn I.n n.na.n ennnfe IVTGin —i I &CCI. 1-2a 6,260 12 $ 87.88 $ 550,000.00 $ 137,500.00 $ 687,500.00 1-3 200 12 $ 95.00 $ 19,000.00 $ 4,750.00 $ 23,750.00 1-4 50 8 $ 164.00 $ 8,000.00 $ 2,000.00 $ 10,000.00 1-5 420 8 $ 63-33 $ 27,000.00 $ 6,750.00 $ 33,750.00 1-6 460 8 $ 72.17 $ 33,000.00 $ 8,250.00 $ 41,250.00 1-7 25 12 $ 416.00 $ 11,000.00 $ 2,750.00 $ 13,750.00 Subtotal Minor walerlme improvements A O,.O,uuu.VU ZP roc,wv.u.. a .,r .............. Other Improvements PS -4 Kessler Mountain Pump Station $ 520,000.00 $ 130,000.00 1 $ 650,000.00 PS 5 Booster Pump Stations (3 total) $ 150,000.00 $ 37,500.001 $ 187,500.00 PRV-1 Pressure Reducing Valve (Van Hoose Dr.) $ 15,000.00 $ 3,750.00 $ 18,750.00 Subtotal Other Improvements $ 685,000.00 $ 171,250.00 $ 856,250.00 Total $ 7,792,000.00 $ 1,948,000.00 $ 9,740,000.00 Fayetteville Master Plan Study ES - 4 Approximate Pipe Approximate Construction Engineering Total Line No. Length Diameter Cost per LF * Cost & Contingencies Project Cost ** LF in Rounded] 2{ 5rU) Major Water Line Improvements (16" Pipes and Greater 11-1 1 4,900 1 18 1 $ 153.06 1 $ 750.000.00 $ 187,500.00 1 $ 937,500.grr_1 Subtotal Major Waterline Improvements $ 750,000.00 $ 187,500.00 $ 937,500.00 Minor Water Line Improvements 12" Pipes and Less Diameter Cost per LF * Cost & Contingencies Project Cost ** LF in Rounded 2596 Subtotal Minor Waterline Improvements $ _ $ $ - Other Improvements —1 Subtotal Other Improvements $ - $ - $ - Total $ 750,000.00 $ 187,500.00 $ 937,500.00 Major Water Line Improvements 16" Pipes and Greater 111-1 1 57.850 1 48 $ 491.69 $ 28.444.000.00 $ 7.111.000.00 $ 35.555,000.00 111-2 1 4.500 18 $ 141.22 $ 640,000.00 $ 160.000.00 $ 800,000.00 Subtotal Major Waterline Improvements $ 29,084,000.00 $ 7,271,000.00 $ 36,355,000.00 Minor Water Line improvements t2" Pipes and Less _. r Subtotal Minor Waterline Improvements $ $ $ Other Improvements Subtotal Other Improvements $ $ - $ Total $ 29,084,000.00 $ 7,271,000.00 $ 36,355,000.00 Fayetteville Master Plan Study ES - 5 Approximate Pipe Approximate Construction Engineering Total Line No. Length Diameter Cost per LF * Cost & Contingencies Project Cost ** LF in Rounded 2596 Major Water Line Improvements 16" Pipes and Greater 111-1 1 57.850 1 48 $ 491.69 $ 28.444.000.00 $ 7.111.000.00 $ 35.555,000.00 111-2 1 4.500 18 $ 141.22 $ 640,000.00 $ 160.000.00 $ 800,000.00 Subtotal Major Waterline Improvements $ 29,084,000.00 $ 7,271,000.00 $ 36,355,000.00 Minor Water Line improvements t2" Pipes and Less _. r Subtotal Minor Waterline Improvements $ $ $ Other Improvements Subtotal Other Improvements $ $ - $ Total $ 29,084,000.00 $ 7,271,000.00 $ 36,355,000.00 Fayetteville Master Plan Study ES - 5 1.0 INTRODUCTION In 2016, the City of Fayetteville authorized McGoodwin, Williams & Yates (MWY) to conduct a Master Plan Study for the water distribution system and recommend capital improvements for future growth. The study includes population and usage projections, water quality analyses, fire flow analyses and an evaluation of additional water transmission supply lines from Beaver Water District. The following report details immediate and long term recommendations for improvements to the Fayetteville water distribution system to meet the growing population and demands for the next 20 -years. 1.1 Scope of Services The Scope of the Master Plan Study includes the following: • Utilize Innovyze InfoWater software and the City's current water model. ■ Review model and make necessary updates based on the City's current GIS. • Create diurnal demand curves for each usage class, • Geocode water usage data from the City's billing records_ • Evaluate and place major demand customers in model. • Perform necessary field work to obtain flows, pressures and other data at appropriate locations and use this information to calibrate the water model. Analyze the water distribution system under existing conditions for the year 2017 and projected conditions of population and water use through the year 2037 that includes the following: o Average Day Demand o Maximum Day Demand o Maximum Hourly Demand o Fire Flow Conditions • Identification of major low pressure areas within the distribution system and recommendations on mitigation of the low pressure (less than 40 pound per square inch (psi)) at projected demands. • Identification of improvements required to serve the City's water service territory, including the planning area jurisdiction. Fayetteville Master Plan Study 1 -1 • Develop recommended sizing and preliminary routing of future distribution and/or transmission lines in anticipated major growth areas, generally requiring pipe sizes 12 inches or greater. • Evaluation of adequacy of total system storage and recommendation on locations for new storage and booster stations that may be required. • Using the updated hydraulic water model, perform a water quality analysis to evaluate the chlorine residual and residence time (age), to identify potential problem regions within the distribution system. • Evaluate and make recommendations for the following specific areas as requested by the City of Fayetteville. o East Fayetteville Improvements, including evaluating the potential need for separating the Gulley and Goshen pressure planes, including revised scope and opinion of costs. o Recommendations for the Benson Mountain Pressure Plane and water tank (east of Goshen). Options as identified by the City of Fayetteville include relocating existing standpipe; relocating the Township water tank to Benson; and providing a new elevated water tank at Benson Mountain. o Recommendations for the Township Pressure Plane and water tank, and the Ash Street pump station. The City of Fayetteville is considering additional storage for Township. Prepare planning -level scopes, schematic maps and opinions of probable costs for recommended CIP projects including: o Immediate improvements • Phase I (Present - 2022) o Future Improvements • Phase 2 (2022 - 2027) • Phase 3 (2027 — 2037) • Assist the City of Fayetteville with review and understanding of existing automated valve system using a previous study performed by others and/or the existing operation & maintenance manual prepared by others. ■ Prepare and transmit a draft report describing the analyses and recommendations for review by the City of Fayetteville. After receiving review comments from the city, prepare and transmit a final report to the City of Fayetteville and the Arkansas Department of Health. • The Water Master Plan Update will include the requirements of the Arkansas Department of Health, Arkansas Public Water system Compliance Summary including Chapter 12: "Water System Planning and Capacity Development". Fayetteville Master Plan Study 1 - 2 2.0 PLANNING AND LAND USE PLAN A review of recent growth in the City of Fayetteville reveals that most growth and expansion of commercial and residential subdivisions have been in the western and eastern regions of the planning area. The city limits of Springdale, Farmington and Greenland have prevented any extensive growth to the north, south and southwest where the planning area boundary and the city limit lines are very nearly the same. The current Planning Area consists of approximately 56,700 acres with the Fayetteville city limit encompassing approximately 34,100 acres within the Planning Area boundary. Based on the 2010 census population of 73,580, the present density within the city limits is approximately 2.06 persons per acre. Figure 2.1 shows a map of the future planned land use in the planning jurisdiction along with the current city limits and planning boundary for the city of Fayetteville. The land use maps. are important in assisting in the determination and location of the different types of demands (residential, commercial and industrial) that could be generated within the Fayetteville water service boundary. For purposes of this study, the planning area was divided into six distinct growth areas. Those areas are designated as the West, Northwest, Northeast/East, Southeast, Existing Service Area and Downtown. The Downtown growth area is comprised of the Inner and Outer Core, which are defined in Fayetteville's City Plan 2030. The Existing Service growth area includes all projected system growth outside of the other growth areas discussed. Figure 2.2 illustrates the boundaries of the growth areas, with the approximate acreage for each growth area shown below: o Downtown — 9,416 acres o Existing Service Area — 58,976 acres o West Area — 2,070 acres o Northwest Area— 1,553 acres o Northeast/East Area — 4,000 acres o Southeast Area— 1,485 acres Of the growth areas discussed, the Northwest and West have the largest potential for growth due to the relatively flat terrain and city utilities provided. The Northeast/East and Southeast are also experiencing growth but due to limited sewer service, etc. the projected growth potential of these areas is anticipated to be considerably less than those on the west side of Fayetteville. The City of Fayetteville currently supplies bulk sale water to several cities/rural water districts that are outside of the current planning boundary. These include the City of West Fork, City of Elkins, Mount Olive Water Association and, on request, the Washington Water Authority. Fayetteville Master Plan Study 2 -1 t ,-11111 oe 4 t _C v r JI A n f! ,j U, 'r w A rn Q o F ui 'y w Q x d Ln 5 N a _ -0 C) w Z W O Q Q Q= O Q J J Z w O> a a :' °gairoy 4n m¢Q�mF-� 0��uZ LL L ¢. Q w = Z w ~Z�2~l7U�w pZ d�Z� •���i Z K J W z Z J OO Q ,n C I.Vuir]y a `' •� GaRla�d Ave a zj a = V V w a¢ HO p w� a> 0 0 _ ., H r�a� V a Z¢ V Z V Z U O V Z l.7 z / (Jy i } Y /7. t ,-11111 oe 4 t _C v r JI A n f! ,j U, 'r w A a _ -0 tka�b °gairoy •���i _ w I.Vuir]y a `' •� GaRla�d Ave a i .^�-.-.,}h•� �'' _ ., H r�a� t ,-11111 oe 4 t _C v r JI A n f! ,j U, 'r w A 3.0 HISTORICAL AND PROJECTED POPULATION AND WATER USE 3.1 Historical and Projected Population To assist with projecting future populations for this study, census data for the City of Fayetteville was obtained from the UALR—Institute for Economic Advancement. Table 3.1.1 sets out the historical census population and growth rate percentages from 1980 through 2010 for the City of Fayetteville as well as the estimated projected population growth and growth rate percentage through the design year of 2037. Table 3.1.1 Historical and Projected Population 1980 Population i Projecte■ Population Rate 36,608 Annual Growth Percentage 1990 42,099 1.41 2000 58,047 3.26 2010 73,580 2.39 2017 87,706 2.54 2022 98,199 2.29 2027 110,056 2.31 2037 1 138,102 2.30 Figure 3.1.1, is a graphical representation of the data detailed in Table 3.1.1, and shows the historical and projected population growth through the design year. The blue line represents the historical census data from 1980 through 2010, while the red line represents the projected population growth from the year 2017 through 2037. Referring to the graph, the Fayetteville population is projected to exceed 138,102 by the design year of 2037. However, the figures shown above are for the population located only within the Fayetteville city limits and not for the actual population served by the City. Currently, Fayetteville supplies water to the bulk sale customers West Fork, Elkins and the Mt. Olive Water Association as well as Goshen, Greenland, Farmington and portions of Washington County (i.e. Wheeler, etc.) and the City of Johnson. Adding these areas would increase the projected population served by the City of Fayetteville to approximately 170,000 by the year 2037. Fayetteville Master Plan Study 3-1 uoilelnd0d - LEOZ 9 E 0 Z 4E03 1 veoe , f r 1 • f i � 1 r 7- _ «I ECH I I- 1 I r , --z--r--�--r- �-r`-,-------r--,-`T'-r-i--r-T--r•-'1--r--,--,�-�--r-�--r-,-•-r-,--r- ZEOZ I f 1 • , , z , • 1 1 Y I 1 Y 4 + 3 f 1 w I I I 1 -,--r,--r--t-'r--r^7--r-T--r-•e`-r-�--r-T--r-T-'r-,--r-,--r- IEOZ ---1--r--r--r-T-- -'l-'r-1-_r'Y-'r ,--r- �--r--I--r- I_•T^_r_r^"r_T--+'-T"-r-�--r-T--r-y--r-",'-•r- 0E03 � 1 1 I 1 1 i 6303 ! • I 1 1 I 1 I 1 1 1 I I I I I I I f- t I t I I I f I i__i H ZOZ I I E t J I I I I t L_J_-L_J_..L_a.__ _J__L_J__1-._L_;__L_1__L _J__F. .f- LZOZ 1 I I 930? 1 I Y t 1 I 1 I u I I 1 I I i I 1 3 I I t 1 . _L.J_._4_J__L._.J-_L_J__L_J.._L_-1__-_•4303 I I I e 1 I I I 1 I I I I I 1 f 1 1 3 1 1 I -,--r'�--r`,--r--:--`--I-I`-r- E3 303 _l-_r'T__r_l__r_.T__Y•--Z__7r_l.--r- 3303 T_ --- _-__r_r__r_T__r_T__r_T__ I -I A 4 I 1 1 1 I 1 I I I I 1 I I ' + i I f ! I 4 1 1 • «1,.«.1 «.•r'---r---r--1-q'-i--a--q--r-d-'1--y'-r`y«_r-. .I__r••W�«r«y__fi_ OZOZ _y_ r••1.. 1 t A I I 1 I 1 1 I r 1 I I I ! 1 1 I Y r l a_-i«••J_«h_J__h_d__h_d_.M+J«_h _J ------ 61H I 7 1 I I I 1 I 1 1 1 Y I f 1 1 Y I 1 1 t E f 1 f 1 I 1 _J_._L_J..-L_J__L_J__L_J__1__I__1.•Ir_1__L.J--L.J««L_J__L_J__L_J__L_J__L_J__«_ L103 1 I I 1 1 1 I I I 1 1 I 1 I I 1 ! 1 I E I l I ! I 1 3 I r 1 r I 1 Y f 4 e ! 9103 ! r 1 I ! I r I 1 I -1 I 1 t ! 1 1 -' - - L ---1 1 I 1 r 1 • -ti--r-�--r--- r--1--z----r--1--T-"r-`r-r--r-i--r_�--r-�--r-�s--r_-1--r--,-�r Y T«.r-�--r-,--r-�--r-T--r-,--r--1--r- ME-�--r-r-r-�--r-�-'r--1--r--r'r--,«. O-y__r__I_'r_T.__r_�__r_l__r__I__T_Y"q [ I 1 I 1 I I I ! r • [ Y 1 I I 1 1 I , "r-T--�-T""•r-.T-.r-�-.«r...,^-C._Zr_1__r« I 3103 Q. _y__r«y...,r«.F-r-�_�r--I-_r_y__f _••1_•q _ _a..r.��..r-y .r«.e«�W_rt_.r �.i««,^.. w...p- • ��0�. a I I y.. --w-y«.' 0103 � I I 1 -a_./._J,_b_J--L_�--a.wM.L-._r--a__I__d_«L• .!_...4_{-«�_J_-L .,1««L«1««►+J-.6. J -,.L-. 1 1 e I I 1 I I .6003 � . T O I ! 1 I I I I 1 I 1 r 1 1 I 1 I 9003 >.(� J«.L_J__L.. L00Z Wl «I«_ L.J_ Ir -J,+1+. F.+L_ a «`--�- I _�« 9003 _ _ _ 1 ' -"f""-`-� , "T"1"T^-:--r--i"i-'a`• I 'I` I` Y 'i`i`•i _ �'-. i"i l i `I"»: "' 4003 b00Z �e --I--r'�--r-�--r-,--r--r-r--1-'s--r-T--r-T--,�--r-�--r-�'-r--k--r_�_'r__:_-r._ ' 1 f I A L A 4 1 1 , ' �•■ •� 1 I • ! 1 1 ! I 1 I 1 f i (,003 c �' ' 1 I 1 T,_.7^ -^I. _P'-1__t-y-----r_-1__r_-1--i-_r•_q__r_ _"r«y__r_1__r_y__r_y__r_�_.,r_ 30031 N L _i--F«W••-F--1-.-h«^e.^�.__Y.__4��__i-_,__d._._F_q«_F_ _p-;-_r_J__,-_.,__h_W__w.. .5. -. f I 1 fM F003 I I A 1 1 1 1 1 I 1 I I 1 1 1 1 1 [ 1 ! 1 F 1 I 0003 •; -_J__L.,J_..L_J__1._J_-L.J.«L_J__1__L_1.•_L_1__L«J- V-3__l_3__L_J__L_J__L_J_..L- 6661 t• I I I I II1 _J__L«J_..L.J__L-J,.,.1«_I__L__1__1__I__,L__L_3.,_L_J__. 1-661 AQ I 1 I I I- -1- 1 I 1 1 I 1 I 1 I 1 1 I 1 1 i 1 1 - --1--r---r-i--i --,-- r --I- -T - �--� - 9661 11- �--r-�s--r--1�--r--I--r'-,"r'-1--7'-r 1 1 I 1 1 1 I 1 I 1 4 1 I 1 I I I -I 1 I I r a 1 1 ! 1 + I [ -T--r-,--r ,- - r -,-- r--t--r --r r--r-T r T - -r -il- -r r- T - -r -r r-,- r-�--r 4661 I Ir1 1 I I I I I 1 1 E i -1 I I I I I F 9 ! I _1--r•,'-r_1-_r•9_"r--1--r----r__E__T_ r -T_- b661 I I 1 1 1 I I 1 1 I I I , 1 1 I I , I I I 1 1 I ' •---r---r---r-_`r--1--r-I--r--1--r--r-r--r-�-_r^�--r--i--r-�--r_ 666 1 I I , ------- -�_`r--r--r-�--F-�--h- E66G ...J- L�+i--4-J_.•L+J__FI__J.__L _a__F-_3__t__J__f-_.1__ a__L_J__L_�__L_J__L_ -------- 1 466E ._J__L«J�-L-•-«L-w__l_J__1__I__1__I__1__L_1__L_1__I.._J_«L J__L_J__L_J,_L_J__L- If 1 1 1 I f I E I I + 0664 _J__L____L_J_,.L.-J-_L_--__L__1__1__I_____�_1__�_J__L_J__L r I- i , i ' 1 I 1 1 I n • I r i I 1 ' I 1 I 1 I I ! � 1 , I I t 1 e I ! 1 I I 1 I 1 1 1 + 1 1 I l I 1 I 1 x I ! -r-�-�-^I-•`1 -- 1-864 _�--r-�--r-,"r- I--r--[--r--1--r-'r-T--r-T--i "T--r-i--r- --r-,--r`,--r-�--r- 9861 -i--r--�i--r�.�•'r-,--r-�--r- �--r-'i--T--r 'r--r-i- -r -�--r- 'r�r-r`,--r-;--r-• 4H61 1 I I f I 1 1 1 I 1 d I 1 �-`r-I--r-,-'fi-^ -r--1--r--1-_r--r-r ..w._-r.y__...__1..y__3_�__r__1__+__,__q__Y.y__r_d__r_y__r_y _r_.•__r_�_ r_y__r_ £961 1 • 1 Y I 1 Y I , «F-.•._...W-.h:..lwr }a«I.._4-..I•._3--1-_d__r-i--F._y--L-y 1 -_d. -M -.1__4--i_.., Y.�. 2961 _.Y.«1__1- I I 0861 O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O On O N O, O Ln LQ It It m co N N O O m O 00 O r- n CD CD m V V m uoilelnd0d 3.2 Historical Wafer Use Table 3.2.1 shows the Fayetteville historical average day usage, maximum day usage and the maximum day to average day (M/A) ratio for 1990 through 2016. The average day is the mean of the daily usage for the calendar year while the day with the largest water usage for a given year constitutes the maximum day. TABLE 3.2.1 Historical Water Usage Year 1990 Average Day r 10.21 Maximum Day r 15.69 Maximum r gel Day Ratio 1.54 1991 10.36 17.54 1.69 1992 10.17 12.84 1.26 1993 10.62 17.95 1.69 1994 11.56 18.94 1.64 1995 12.45 21.51 1.73 1996 12.55 19.19 1.53 1997 12.33 20.53 1.67 1998 13.28 23.82 1.79 1999 12.86 23.56 1.83 2000 13.08 23.77 1.82 2001 13.07 19.70 1.51 2002 13.73 23.63 1.72 2003 13.38 26.24 1.96 2004 13.04 19.86 1.52 2005 14.33 24.05 1.68 2006 14.75 25.12 1.70 2007 14.17 25.42 1.79 2008 13.01 20.93 1.61 2009 12.44 23.72 1.91 2010 13.15 23.12 1.76 2011 13.56 28.06 2.07 2012 14.49 25.12 1.73 2013 13.70 24.38 1.78 2014 14.23 24.43 1.72 2015 14.18 25.76 1.82 2016 14.99 21.21 1.42 The tables located in Appendix B detail the Fayetteville usage for each month from the year 1975 to the year 2016. The tables also contain the average day, maximum day and ratio of average day to maximum day for each month. The highest valid maximum day recorded to date happened in August 2011 when the usage reached 28.06 MGD. Table 3.2.1 also reveals Fayetteville Master Plan Study 3 - 3 that the M/A ratio can vary significantly from one year to the next with the highest recorded M/A ratio occurring in 2011 with a ratio of 2.07. The year to year variations are typically weather dependent and largely represent water use on lawns, gardens and landscaped areas. Figure 3.2.1 shows the historical consumption for Fayetteville by month from 1980 through 2016. The graph also shows seasonal variation in water usage as evidenced from the spikes occurring mid -year during most years. The absences of evenly spaced rains cause increases in irrigation demands during the summer periods, which significantly influence the size of the summer time spike. 3.3 Projected Water Use Figure 3.3.1 shows the historical water usage projected forward over the next twenty years using a best -fit trend line. The trend line is based on historical usage data and engineering judgment and will assist in developing projected average day flows for each design horizon. The figure also shows a "maximum day band", which is projected over the 20 -year design period. The higher values for the maximum day were based on an M/A ratio of 2.0 and the minimum values for the maximum day were based on an M/A ratio of 1.3. As shown in Table 3.2.1, the historical maximum day demands have generally fallen between the "maximum day band" illustrated in Figure 3.3.1. An M/A ratio of 2.0 was used for design purposes based on the fact that historical water use records clearly indicate the potential for the maximum day usage to approach or exceed (2011) two times the average day usage during any given year. Recommended system improvements were designed to deliver twice the daily average flow to avoid water shortages and low pressures in the system. Table 3.3.1 shows the projected average and maximum day demands as well as the M/A ratio for each of the design horizons. These design values were used for all the analyses in this study. TABLE 3.3.1 Average Day, Maximum Day, and M/A Design Values Fayetteville Master Plan Study 3 - 4 N N ON 00 (O - T O 00 (O (OJW) 96usn V N LIOZ 9[OZ 9102 17IOZ 6[OZ Z[oz; IIOZ 0 I -0Z 6002 90OZ LOOZ 9002 SOOZ 17002 6003 ZOOZ IOOZ OOOZ 6661 R 8661 } L66[ 966[ 9661 1766[ 0661 266[ 1661 0661 686[ 886 L86[ 9861 9861 17861 E861 Z86[ 1861 0861 O d rn �a d T M C7 m W cr 'o D a _ c LL v (a9w) e6esn ti LEOZ 9£OZ cz 9602 c VEOZ T o C-4 C EEO? o, v Z£OZ as 1£OZ a' OEOZ o 6ZOZ N 8303 LZOZ 0 9ZOZ ti 9ZOZ , N � bZOZ o M EZOZ ZZOZ a [ZOZ a' o C3 - OZOZ C4 � 6 LOZ ci M 8102 LLOZ ME 9LOZ , b(OZ o M3 OZ o Z10Z E IN a O[OZ 2 x 6002 a g 800& n LOOZ } 9002 •0 9002 a` VON EON, ZOOZ E Wo?,E OOOZ 666[ 8661 2 2661 966L Mn 5661 V661 E661 Z66L 166L 0661 6861 886[ Z96 [ a 9861 .N 9861 - b861 = £861 I E96 1861 -- - -- — - 086 [ O m co It N O w w V N O w cD et N O w w N O CD SD It N O lf) d d' V IT 'IT 0 m M m m N N N N N r r r r r- (a9w) e6esn 3.4 Projected Water Use by Growth Areas Table 3.4.1 details how MWY allocated the projected average day and maximum day demands for the growth areas and bulk sale customers for each design horizon. The amount of usage for each growth area was determined by applying a percentage of the projected increased usage for each design horizon. The percentage assigned to each growth area was determined based on previous studies, vacant property and topography in each growth region as well as historical and anticipated growth for these areas. The location and limit of each growth area along with the growth percentages applied to each of these areas is shown in Figure 3.4.1. TABLE 3.4.1 Average & Maximum Day Projected Water Use Growth Area/ Bulk Sales Average Day '2022 2027 2037 (MGD) (MGD) (MGD) Water Service Area Maximum D. 2022 2027i (MGD) (MGDII) - (MGD) Water Seryice Area ExistingFayetteville System --F- 14.1514.15 14.15 18.84 18.84 1 18.84 Growth Areas Downtown (Inner & Outer Corel 0.32 0.49 0.87 1.74 2.08 2.86 Existing Service Area 0.12 0.17 0.31 0.63 0.76 1.04 West 1.00 1.51 2.69 5.36 6.43 8.85 Northwest 0.74 1.12 1.98 3.94 4.73 6.51 Northeast and East 0.35 0.54 0.95 1.89 2.26 3.12 Southeast 0.41 1 0.62 1.10 2.21 2.65 3.64 Bulk Sales West Fork 0.19 0.21 0.24 0.27 0.28 0.33 Mt. Olive Water Association 0.19 0.22 0.28 0.22 0.25 0.31 Elkins 0.21 0.27 0.45 0.26 0.33 0.54 Total (MGD) 17.68 1 19.30 23.02 35.36 38.61 46.04 Fayetteville Master Plan Study 3.7 4.0 EXISTING WATER DISTRIBUTION AND STORAGE SYSTEM Water Supply — Beaver Water District Water Supply Facilities The City of Fayetteville purchases treated water from Beaver Water District (BWD), which currently operates and maintains the Joe M. Steele and Hardy W. Croxton Water Treatment Plants located east of Lowell, Arkansas. Currently, BWD has an available capacity of approximately 140 -MGD for its customers, which also include the cities of Springdale, Rogers and Bentonville. According to the BWD Master Plan Study report, the total capacity of 140 -MGD should meet the projected maximum day water demands for the customers through 2031. Based on the report, a 40 - MGD plant expansion will be required by the year 2031 to meet the future demands of the region. Furthermore, it is understood that BWD will continue to upgrade its supply facilities as dictated by future growth in the area. Fayetteville Master Plan Study 4-1 Water Transmission Facilities Currently, BWD conveys water to its customer cities directly from the water treatment facility through water transmission pipes owned and maintained by the customer cities. BWD conveys water to the Fayetteville distribution system through two water transmission lines, a 36 -inch and a 42 -inch. According to a study commissioned by Beaver Water District, the total capacity of the current transmission lines is approximately 54 -MGD. The two transmission lines currently enter the Fayetteville system in the vicinity of George Anderson Road and Zion Road in the northeast section of the system. Fayetteville Master Plan Study 4 - 2 Fayetteville Distribution System BWD pumps treated water into the Fayetteville system using five (5) pumps. The high service pumps at BWD consist of three (3) 9,600-gpm (gallons per minute) pump, a 5,800- gpm pump and a 3,800-gpm pump for a firm capacity of approximately 41 -MGD. Primary Pressure Plane Currently, BWD monitors the ground storage tanks of Kessler Mountain, Rodgers Drive and Baxter Lane through the Fayetteville SCADA system and pumps water to Fayetteville according to the water levels in the tanks. These tanks are all located in the Primary pressure plane which has a hydraulic gradient elevation of 1,578 -feet msl (mean sea level). The Fayetteville distribution system has eight (8) main pressure planes and four (4) relatively small pressure planes which are discussed in more detail within this section of the report. The Baxter Lane tank site, shown at right, contains two (2) ground storage tanks, a 5 -MG and a 1 -MG and is approximately located in the center of the City. Figure 4.1 is a schematic illustrating the relationship between BWD and the Fayetteville system infrastructure. Fayetteville Master Plan Study 4 - 3 O Q c w O ❑ a Z Z �a N WN i J�,a u U' f 3 I� o N d i�i Y�� 1 Approximately 27 -MG of storage is located in the Primary pressure plane. The Rodgers tank site located on the south side of Mt. Sequoyah contains two (2) 4 -MG ground storage tanks and the Rodgers pump station which pumps water into the Mt. Sequoyah pressure plane. The Kessler Mountain tank site located in the southwestern region of Fayetteville currently accommodates two (2) 6 -MG ground storage tanks. Future planning for this site includes two (2) additional 6 -MG ground storage tanks, a pump station and an elevated tank that could serve the higher elevated areas in this region if necessary. The elevated tank shown below right is located off Markham Street and east of I-49. The Markham Hill tank has a capacity of 1 -MG. Fayetteville Master Plan Study 4 - 5 Mt. Sequoyah Pressure Plane The Mt. Sequoyah pressure plane has an overflow elevation of 1,815 -feet msl. This gradient is set by the Mt. Sequoyah elevated tank located on Skyline Drive and the Canterbury elevated tank located on Canterbury Road. The Mt. Sequoyah pressure plane has 0.75 -MG of total storage - the Mt. Sequoyah elevated tank has a capacity of 0.25 -MG and the Canterbury elevated tank has a capacity of 0.5 -MG. The tanks and the pressure plane are fed from the Primary pressure plane through three points. One feed point is the Rodgers pump station located at the Rodgers ground storage tank site. The photograph below shows the existing Rodgers Pump Station. Fayetteville Master Plan Study 4.6 Another point of entry into the Mt. Sequoyah pressure plane is located on Hwy. 265 at the Hyland Park pump station. This pump station is used primarily during peak demand times to help supply water to the residents of Hyland Park Subdivision and Sherwood Forest Estates. The elevated tank located on Canterbury Road has been in operation since June 2011. The tank, which has a storage capacity of 0.5 -MG, operates within the Mt. Sequoyah pressure plane and has an overflow elevation of 1,815-msl. The Canterbury tank primarily receives water from the Stone Mountain pump station, which is located south of the tank in the existing Stone Mountain subdivision. Fayetteville Master Plan Study 4.7 Township Pressure Plane The Township pressure plane is supplied water from the Primary pressure plane through the Ash Street pump station. The Township Tank, which is located north of Township Street, has an overflow elevation of 1,625 -feet msl and is the control for the pump station. The tank has a capacity of 0.075 -MG. The photograph below shows the existing Ash Street pump station. Fayetteville Master Plan Study 4.8 Gulley Pressure Plane The Gulley pressure plane is located in the eastern region of Fayetteville and is supplied water by the Primary pressure plane. The Gulley Road tank has a capacity of 0.75 -MG and an overflow elevation of 1,660 -feet msl and is located on Gulley Road. Water is supplied to the tank and the pressure plane through the Gulley Road pump station. The station consists of three pumps and is also located north of the tank on Gulley Road. ii Gulley Road Pump Station VIP Fayetteville Master Plan Study 4-9 Goshen Pressure Plane The Goshen pressure plane is located in the eastern most region of the Fayetteville water system. The pressure plane primarily consists of the residents that live in the community of Goshen. The pressure plane receives water from the Gulley pressure plane through a control valve that is approximately located at the base of Slaughter Mountain on Hwy. 45. The pressure plane has a hydraulic gradient elevation of 1,550 -feet msl. This gradient is set by the Goshen tank, which has a capacity of 0.3 -MG and is located on Fire Tower Road. Fayetteville Master Plan Study 4-10 Benson Mountain Pressure Plane The Benson Mountain pressure plane is located east of the Goshen tank and is fed from the Goshen pressure plane through the Benson Mountain pump station which is located on the Goshen tank site. The pump station supplies water to the Benson Mountain standpipe tank, which has a capacity of 0.035 -MG and an overflow elevation of 1,700 -feet msl. Fayetteville Master Plan Study 4-11 Round Mountain Pressure Plane The Round Mountain pressure plane consists of a 0.1 -MG standpipe tank. The tank is located on Round Mountain Road in the southeast region of the Fayetteville water service area, and has an overflow elevation of 1,624 -feet msl. The pressure plane is supplied water from the Primary pressure plane through the Round Mountain pump station, which is located on Lake Sequoyah Drive. Fayetteville Master Plan Study 4-12 South Mountain Pressure Plane The South Mountain pressure plane is located in south Fayetteville off South School Avenue, The pressure plane does not contain a storage tank and receives water from the Primary pressure plane through the South Mountain pump station. The pump station, located on 24'h Street, is shown below. The station consists of four pumps. The pump station must run constantly to maintain water supply and pressure throughout the South Mountain pressure plane. r .. � '_ .� 'fit •.� Fayetteville Master Plan Study 4.13 Fayetteville Surge Tanks The surge tank, located on Fitzgerald Mountain in Springdale, has a capacity of approximately 0.23 -MG. The tank fimctions as a buffer for the operation of the high service pumps located at Beaver Water District (shown at right). In April 2017, a new pressurized surge tank was constructed by Beaver Water District due to a recent line break on Fayetteville's existing 42 - inch transmission line. The new tank was installed at the high service pump station located at the BWD plant site. The tank has approximately a 9,800 gallon capacity and assists in maintaining maximum surge pressures in the 42 -inch transmission line to less than or equal to the 250 -psi allowable sure pressure of the line. City of Fayetteville 0.23 NIG Surge Tank +, Each of the pressure planes, except for the Primary and Goshen, are fed by pump stations that pump water from the Primary pressure plane. Figure 4.2 illustrates the City of Fayetteville's pressure planes, and shows ten (10) of the twelve (12) pressure plane service areas. The Blue Springs and Round Mountain Jet Pump pressure planes serve a minimal number of customers and are within the Goshen and Round Mountain pressure planes, respectively. Distribution System Piping The existing Fayetteville system has approximately 744 miles of water piping, which includes the 36 -inch and 42 -inch transmission lines from Beaver Water District. The distribution lines range in size from 1 -inch in diameter to 42 inches. Table 4.1 shows the approximate lengths and material of each pipe dimeter in the existing Fayetteville system. Fayetteville Master Plan Study 4.14 TABLE 4.1 Distribution System Piping Fayetteville currently sells water to three bulk sale entities, West Fork, Elkins and Mt. Olive Water Association. West Fork and Elkins are each served through one metering station and Mt. Olive is served through two. Fayetteville also serves the cities of Farmington, Greenland, Goshen and a small area of Johnson. These four cities waterlines are owned and operated by the City of Fayetteville. The cities do not have metering stations and the customers served are considered part of the customer base for the City of Fayetteville. Fayetteville Master Plan Study 4-15 Diameter (inches) Cl DI AC PVC Galv PCCP Length (miles) Fayetteville currently sells water to three bulk sale entities, West Fork, Elkins and Mt. Olive Water Association. West Fork and Elkins are each served through one metering station and Mt. Olive is served through two. Fayetteville also serves the cities of Farmington, Greenland, Goshen and a small area of Johnson. These four cities waterlines are owned and operated by the City of Fayetteville. The cities do not have metering stations and the customers served are considered part of the customer base for the City of Fayetteville. Fayetteville Master Plan Study 4-15 -'OE {K T�y ('� Z Q Z O Z Lu 0 LUJ 0 < o < cc} O ¢ < ? m p V j ZT z < 0 < H l7 w 0 0 0 a Z z w IF w 0 a=_ O R-- 0�—o ow U d}iaml7 l7 te�In vlFm Q Ln o I w - m � �p 0 m°� h t G AN -4 ie LL) Ny` m Z Q m = im Z n O m` O a o m Z S � s• C J C J f Oki �anassY,a7 :moi ro x Z I"I ]5 iEo4dLYtl7�,�, a^�i a68t�p� + p moi.. O Lo d a IJ $ CL I p Q 9 "ryy1�4 /ry� i J O '4v;OU4,s LA = ON 430at iu N 0.d M sr r. MaeStr, m W e;a S V) G z Q' a Is N UJ LLI ZQ � J W W a- � J W J OC w � ~ w LU � W d � CC LLL C H U-1 Ln OS4> 1. 1) rAMy 1ul .iv. S9zT my 5.0 DEVELOPMENT AND VERIFICATION OF THE HYDRAULIC MODEL The original hydraulic water model of the Fayetteville system was created in 1996 for a Master Plan Study that was performed by MWY. Since that time, MWY has updated the Master Plan in 2002 and most recently in 2011. In 2015, the existing 2011 hydraulic model was converted, by others, from the H2ONET software to the GIS (geographic information system) based Infowater (product of Innovyze, Inc.), which the City has been utilizing for various system analyses. 5.1 Calibration and Verification of Model The first step of the Master Plan consisted of reviewing and updating the existing hydraulic model based upon the City's GIS to reflect the current distribution system. Once completed, existing average and maximum day demands were placed into the model at the approximate location where the demands occur in the system through a process called geocoding. Using Arc View version 10.4 software, geocoding was accomplished by obtaining individual account usage files from city water billing records and matching them to the exact locations in the City's street centerline geo-reference file. Over a four-day period in February and March 2017, the Fayetteville water department staff and MWY conduced sixty-eight (68) static pressure tests and fourteen (14) flow tests at different locations throughout the City of Fayetteville's water service area. Table 5.1.1 and 5.1.2 sets out the dates, times, locations and recorded data from the field pressure and flow tests performed in the water service area. The tables also list the subsequent pressure or flow as measured in the hydraulic model for each location. Referring to Table 5.1.1, the average deviation of modeled pressures from field pressures was approximately 3.15 -percent, and approximately 14.51 -percent for the flow tests, which is shown in Table 5.1.2. To duplicate actual steady state conditions as close as possible for these specific dates, SCADA system data records on tank levels and pumps in operation were obtained from the City. Flow data for the City of Fayetteville was obtained from BWD records. Diurnal demand curves were also created and added to the hydraulic model for the average and maximum day. Diurnal demand curves are an illustration of how system demands change each hour over a given day. The average day used in the model occurred in June 2015 with the largest maximum day recorded occurring in August 2011. Diurnals were established by reviewing water usage records from the year 2011 to present. Once these demand days were determined, existing conditions could be modeled by obtaining 1 -minute data from the City as well as BWD. This information included tank levels and pump station flows for the Fayetteville system along with flows from the high service pumps located at BWD. Fayetteville Master Plan Study 5.1 as 3 an ,i, 11M gill 61111 i? loll I 111111 III IIs,IRIB I loll Rift MEN m Inn I 5.2 Infrastructure Included in Model The following is a breakdown of the infrastructure contained within the hydraulic model for the existing Fayetteville system: • Approximately 13,850 pipe segments and 12,456 nodes Water Tanks • Pump Stations Pump Station Ash Street Tank Baxter Baxter Plane Primary Primary Tank Type Ground Ground Overflow Elevation (ft). 1,578 1,578 CapacityPressure (MG) 1.00 5.00 Rodgers Primary Ground 1,578 4.00 Rodgers Primary Ground 1,578 4.00 Markham Primary Elevated 1,578 1.00 Kessler Mtn. Primary Ground 1,578 6.00 Kessler Mtn. Primary Ground 1,578 6.00 Gulley Gulley Elevated 1,660 0.75 Goshen Goshen Ground 1,550 0.30 Mt. Sequoyah Mt. Sequoyah Elevated 1,815 0.25 Canterbury Township Mt. Sequoyah Township Elevated Elevated 1,815 1,625 0.50 0.075 Benson Mtn. Benson Mtn. Stand Pipe 11700 0.035 Round Mtn, Round Mtn. Stand Pipe 1,624 0.10 Surge Primary Stand Pipe 1,698 0.25 • Pump Stations Fayetteville Master Plan Study 5 - 4 Pump Station Ash Street Pressure Plane Township No. of Pumps 2 CapacityFirm .. 200 South Mtn, South Mtn. 4 400 Sunrise Mtn. Sunrise Mtn. 2 40 Gulley Road Gulley 3 1,000 Rodgers Mt. Sequoyah 2 800 Hyland Park Mt. Sequoyah 2 400 Stone Mtn. Mt. Sequoyah 4 1,200 Benson Mtn. Benson Mtn. 2 40 Round MIn. Round Mtn. 2 100 Fayetteville Master Plan Study 5 - 4 • 2 Pressure Reducing Valves (PRV) & 2 Flow Control Valves (FCV) • High Service Pumps and Clearwell @ BWD Appendix A contains a large-scale map of the existing and proposed infrastructure for the Fayetteville distribution system and the transmission waterlines from BWD. Table 5.2.1 lists the approximate total length of waterlines by pipe diameter in the existing distribution system. 'The total length of waterlines in the system is approximately 744 miles, which includes the 36 -inch and the 42 -inch transmission lines from BWD. TABLE 5.2.1 Distribution System Pipe Lengths Diameter Length (inches) Cl DI AC PVC_ Galy PCCP (miles) ��00000� ' or�0000� o��oo�o �ooiaa�000 ��0000® �om�■�oo® Fayetteville Master Plan Study 5.5 6.0 DESIGN CRITERIA This section discusses the criteria that MWY used to analyze the Fayetteville water distribution system. Utilizing the hydraulic model, these factors were observed over a 72 - hour extended period simulation under maximum day demand conditions. The results from this analysis assisted MWY with determining what future infrastructure improvements would be necessary within the distribution system to meet the growing demands of the City. 6.1 Transmission Capacity Numerous factors enter into the design of transmission capacity. The major factors are as follows: • Total system storage Operational water levels to be maintained in the tanks • Maximum day expected in the system for each design year • Number of hours available for refilling of storage tanks • Maximum velocity and head loss allowed in the transmission line • Peak hour water use 6.2 System Storage Operational storage requirements in a distribution system generally involve three parameters: Maximum Day Usage Average Day Usage Required Fire Flow Rate and Duration However, due to the increasing problems with water quality issues that distribution systems face due to the EPA (Environmental Protection Agency) Stage 2 DBP (disinfection by- product) requirements, MWY recently solicited assistance from the Arkansas Department of Health and Human Services (ADH) regarding the required operational storage for a distribution system in times of emergencies (i.e. line breaks, BWD emergency shut down, etc.). ADH recommended system storage equal to a typical average day usage to assist in mitigating the formation of DBP's and to assist in keeping water "fresh" in the distribution system (see Appendix I, Technical Memorandum No.2). However, the ADH emphasized that the system storage must be usable, which was defined as the storage above the minimum water level of a tank that is required to maintain a pressure of approximately 20 -psi or higher in the system. ADH also recommended that total system storage (i.e. total storage present in system) should not exceed 3-4 days. This recommendation is to assist with tank water turnover and maintaining quality water in the system. Other ADH recommendations included redundancy in areas such as power supplies (back-up generators, etc.) and/or alternate feeds from the water supplier, if feasible. Table 6.2.1 sets out the recommended storage requirements by design horizon. Using the recommendations from the ADH, the approximate present day storage requirement for Fayetteville Master Plan Study 6-1 Fayetteville is approximately 16.19 million gallons, and by the year 2037 the requirement will increase to approximately 23.02 million gallons. TABLE 6.2.1 Recommended Water Storage Requirements 6.3 Fire Protection Fire flow rates and the required duration times shown below for each Use District were established by the International and Arkansas Fire Codes. The fire flow requirements used in this study are summarized in Table 6.3.1. TABLE 6.3.1 Fire Flow Requirements Fire -Flow Duration Use District .. Residential 1,500 2 Commercial 1,500 2 Industrial/Heavy Commercial `2500 & Greater 3 to 4 i �[♦ Su�ti ;a� .�_.. .. _, .. €�F$€'SSE iid Fa k �)y;i ..+°. 33.: A�3. spX'IYlUv sysltm !Sv(irc'f I53F8ma6i'maf -`Fie Code; Appendix R "Fire Flow Reqs for BIfPkhny5 `) Typically, dead-end waterlines and waterlines smaller than 6 -inch in diameter are unable to sustain a fire flow of 1,500-gpm or greater. For this reason, fire flows were placed for analysis only on junctions that were located on 6 -inch diameter waterlines or larger. Fire flows were analyzed using the model during the peak demand period of the maximum day to reflect the worst case scenario and identify fire flow limitations existing in the system under these conditions. Using the model, available fire flows were projected at each junction for each design horizon. For the purposes of the study, available flows are projected flows with minimum residual pressures of 20 -psi or greater at that location. For planning purposes, a separate analysis was conducted to identify junctions within the system that fell below 10 -psi during the minimum fire flows shown in the table above. In many cases, available fire flows may be above the minimum flow while maintaining 20 -psi Fayetteville Master Plan Study 6.2 or greater residual pressures at the location of flow, while inducing lower or even negative pressures in other, usually, higher elevation, locations in the system. Per regulations, the Arkansas Department of Health will allow residual pressures in some areas to dip below 20 - psi during short duration emergency situations such as fire events (Source: Dept. of Health "Rules and Regulations Pertaining to Public Water Systems ", Sect. XIV B), although inducing suction would not be allowed. For analysis purposes, 10 -psi was used in the analysis for minimum system pressures at areas other than the flow junction. MWY used 10 - psi to allow a reduction in pressure as allowed by the ADH while maintaining target pressures well above zero for conservative purposes, since actual system pressures may deviate from modeled pressures. The analysis identified locations where fire flows induced pressures less than l0 -psi, and improvements were planned to improve low pressure areas where practical. 6.4 Low Pressure Analysis For purposes of this study, any typical operating pressure below 40 -psi under maximum day (non -fire flow) conditions was considered to be a low pressure and required further analysis. A low pressure analysis of the distribution system was completed for the existing system as well as for each design horizon. The low pressures that might result from fire flows on the maximum day were not considered as normal operational low pressures. 6.5 Water Quality Analysis System chlorine residuals and residence time (age) were analyzed using the modeling software. Based on the historical records provided to MWY by the city of Fayetteville, chlorine residual test sites were placed within the model and calibrated to approximately match existing test records. Once calibrated the model was used to analyze the water quality for each of the design horizons. It is important to note that the chlorine residuals and residence time of water are affected by many factors within the distribution system. Thus, the results of the water quality analysis in the 10 -year and 20 -year design horizons could vary from actual values due to the constantly changing distribution system. MWY recommends continued analysis of the water quality in the distribution system every few years to ensure more accurate test results. 6.6 Development Water Transmission Main Spacing In this study, a 12 -inch water transmission main grid with a separation of approximately one- half mile is recommended in the distribution system where feasible. This spacing is based on hydraulic model runs of the system and engineering judgement as to the line sizes and spacing required to support fire flows and to supply peak demands within the system. In practice, the line spacing will depend on the corridors available for water line construction, the location of existing and future streets and the pattern of development in a given area. The construction of the 12 -inch waterline grid is not tied to a particular phase of work as recommended in this study. The need to construct a given transmission main will depend on the location and intensity of the development. Whenever such development occurs, the Fayetteville Master Plan Study 6 - 3 hydraulic model should be run to confirm the need for the main (or mains) and to confirm the location and size of the transmission line. It is recommended that the City develop a plan for the one-half mile grid to follow existing transportation corridors, property lines and development trends. The installation of the 12 - inch waterline grid should be consistent with improvements that occur in undeveloped lands within the planning jurisdiction. Fayetteville Master Plan Study 6 - 4 7.0 SYSTEM ANALYSIS AND RECOMMENDATIONS In the study of the Fayetteville distribution system, MWY's initial step was to analyze the existing system to discover any deficiencies that may exist using the updated Fayetteville hydraulic water model. MWY then created a 20 -year master plan for system improvements necessary to meet the needs of the City. The model was operated utilizing the existing and projected system demands and took into consideration the operational requirements unique to the Fayetteville system. 7.1 Existing Distribution System Analysis Existing Fire Flows Utilizing the hydraulic water model, the existing system was analyzed for fire flow deficiencies. Simulated fire flows were performed on all waterlines with a diameter of 6 - inches or larger. As stated in Section 6.0 of this report, generally waterlines smaller in diameter than 6 -inches are not able to sustain the required fire flow, therefore they were omitted from the analysis. Appendix C contains the exhibit's that illustrate the areas in each pressure plane where fire flow deficiencies occurred in the existing distribution system. Fire flows were analyzed during the peak hour of the maximum day to reflect the worst case scenario and identify fire flow limitations that may exist in the system under current conditions. Generally, fire flow deficiencies can be attributed to being located on dead-end waterlines, small diameter waterlines and/or areas located in the outer reaches of the distribution system. For this report, a given location was considered adequate if the required fire flow could be met while maintaining a minimum residual pressure of 20 -psi (pounds per square inch) at the flow junction. Appendix C also contains tables detailing the results from the analysis of the existing system fire flows for each corresponding exhibit. As shown in the exhibits, numerous areas had insufficient waterline interconnectivity to convey the amount of water needed to supply the required fire flow of 1,500-gpm. Existing Low Pressure Areas An area is considered to experience low pressure when under normal operating conditions the pressure falls below 40 -psi. Factors that can attribute to an area experiencing a low pressure are as follows: o Higher ground elevations o Low water levels in tanks o Customers located on small diameter waterlines (generally less than 6 -inch) o Customers located on dead-end waterlines Fayetteville Master Plan Study 7-1 o Peak demand periods (i.e. summer) To determine potential low pressure problems, the water service area was analyzed during the maximum day to identify limitations that may exist in the distribution system. Exhibit D1 and Table D1 located in Appendix D show the areas which experience pressures below the requirement. Existing Water Quality Analysis With the aid of the hydraulic water model, MWY performed a water quality analysis for the existing Fayetteville distribution system to evaluate potential problem areas that may exist within the system. The water quality analysis consisted of evaluating the chlorine residual and residence time (age) of the water. The water quality analysis was evaluated during an average day demand to simulate lower water use in the system. Chlorine is used to disinfect the water supplied to the Fayetteville system and is added at the Beaver Water District plant. The amount of chlorine added to the system depends on the time of year and the demands in the distribution system. Based on historical information provided by BWD, the amount of chlorine added to the treated water at the treatment plant ranges between 1.15 milligrams per liter (mg/L) to 1.40 mg/L. To analyze the amount of chlorine in the water system, MWY collected historical chlorine residual test data from the City of Fayetteville which was used to calibrate the hydraulic water model. Currently, the water department tests over 90 different site locations in the water service area. For the purpose of this report, any location within the water- service boundary was considered marginal if a chlorine amount of 0.01 mg/L or less was detected after three (3) days within the distribution system. Exhibit E1, which is located in Appendix E, shows the locations where marginal amounts of chlorine were detected as determined by the hydraulic water model for the existing Fayetteville distribution system. As shown in exhibit, these locations are generally located on dead-end waterlines and/or in the extremities of the water system. According to the model analysis; however, there were a number of locations in the vicinity of the Canterbury tank which experienced chlorine residuals below 0.01 mg/L. Factors that can attribute to low chlorine residuals are minimal customer usage, tank water turnover, age of water, etc. Generally, water storage tanks can be a major contributor in increasing water age in a distribution system. Tank water age can especially be an issue during low demand periods of the year. However, based on the Canterbury tank plans of record, the existing tank is equipped with separate inlet and outlet waterlines. Typically, this design configuration has a significant affect in allowing greater turnover and maintaining a lower water age in the tank. Based on city bacteriological (Bac-T) site data, there is presently not a sample site located in the problem areas surrounding the Canterbury tank. With no historical data to review, MWY recommends the City perform additional tests in these areas to verify that the model results are accurate. If field tests verify that an issue exists, further analysis may be needed to Fayetteville Master Plan Study 7 . z determine the appropriate measures to implement to increase the chlorine residual levels in this area. Methods that can assist in increasing chlorine residual levels are shown below: Increase Tank Turnover (i.e. change pump station operation and allow tank level to drop more, promote development to increase demands, etc.) Improve Tank Water Mixing (i.e. mixing system) Implement Flushing Program The residence time (age) for the water supplied to the Fayetteville distribution system was considered marginal if the age of the water was three (3) days or greater at any location within the system. Below is a list of problems that can arise if water in a system remains unused (stagnant) over an extended period. c Taste and odor problems o Discoloration o Temperature increase o Sediment deposition Exhibit F1 (see Appendix F) illustrates the existing distribution system residence time analysis for the areas within the Fayetteville water service boundary that did not meet the criteria listed above. Referring to the exhibit, the majority of the areas that experience marginal water residence time occur on dead-end waterlines. When feasible, looping dead- end waterlines back into the main grid of the water system is the best way to mitigate most water quality problem areas. Disinfection and Disinfection Byproducts Rule The Stage 1 Disinfection and Disinfection Byproducts Rule (Stage 1 D/DBP) was promulgated in December of 1998. The rule was intended to improve public health protection by reducing exposure to disinfection byproducts (DBP). DBP's are chemical compounds produced as an unintended consequence of disinfection in drinking water treatment. Disinfectants react with natural organic matter (NOM) found in water, creating by- products. Some DBP's have been found to be carcinogenic or cause adverse reproductive effects (Edzwald 2011). Pertinent requirements of the rule are: o The rule established maximum residual disinfectant levels (MRDL) for chlorine, chloramines, and chlorine dioxide. o Maximum contaminant levels (MCL) for the following DBP's were also created: total trihalomethanes (TTHM or THM), five haloacetic acids (HAAS), bromate, and chlorite. The regulated trihalomethanes are chloroform, dibromochloromethane, dichlorobromomethane, and bromoform. The regulated haloacetic acids are mono-, di-, and trichloroacetic acids and mono- and dibromoacetic acid. The MCL for TTHM is 80 micrograms per liter (µg/L) and the MCL for HAAS is 60-µg/L. A microgram is one millionth (10-6) of a gram. Compliance is based on a running annual average of all samples from all monitoring locations within the water Fayetteville Master Plan Study 7 - 3 distribution system. The regulated DBPs of concern for Fayetteville are TTHM and HAAS. The Stage 2 Disinfection and Disinfection Byproducts Rule (Stage 2 D/DBP) was promulgated in January of 2006 and builds upon the Stage 1 D/DBP Rule to further reduce the public to DBP exposure. Compliance monitoring for Fayetteville began in 2012. The requirements of the rule are summarized below: o The rule required systems to conduct an Initial Distribution System Evaluation (IDSE) to identify locations in the distribution system with high concentrations of disinfection byproducts. Locations with the highest DBP concentrations identified by the IDSE were generally used as the sampling sites for Stage 2 D/DBP compliance monitoring. o MCL's for the TTHM and HAAS remain unchanged from the Stage 1 D/DBP Rule; however, compliance is based on a locational running annual average for each sampling site rather than a running annual average of all sampling locations. o In order to provide an early warning of future MCL violations, an operational evaluation level (OEL) was created based on the compliance monitoring results. A system which exceeds the OEL is required to review their operational practices and submit a report to their state identifying actions taken to mitigate future high DBP levels. The new Stage 2 rule changed the method of determining compliance with maximum contaminant levels. Under Stage 2, the DBP concentration for a particular sampling site is averaged with the results from the previous three quarters and a locational running annual average (LRAA) is determined. Compliance is achieved if the LRAA is below the MCL. Stage 2 differs from Stage 1, because under Stage 1 compliance was based on a running annual average of all samples from all monitoring locations within the water distribution system rather than a specific sample site. Based on the Individual Distribution System Evaluation (IDSE) performed by the Arkansas Department of Health (ADH), the City of Fayetteville has six (6) sites throughout the distribution system that have been monitored for the formation of DBPS. In addition, Beaver Water District monitors two additional sites for Fayetteville -system DBPs. Figure 7. 1.1 shows the location of the DBP sites in the Fayetteville distribution system. Figures 7.1.2 and 7.1.3 illustrate quarterly LRAA results for 2015-2016 for TTHMs and HAAs, respectively. As shown in the figures, Fayetteville's DBPs are significantly under the MCLs established by the Stage 2 rule. Fayetteville Master Plan Study 7.4 i r L6 9 4 B ' 1 0 0 r; A ifJ i r L6 9 4 B ' 1 0 0 FIGURE 7.1.2 TTHM Locational Running Annual Averages (µg/L) 100 90 MCL = 80 µg/L 80 ----------------------------------------------------------- ------ -____70 70 60 50 11 t 40 � 30 0 20 Dec -14 Apr -15 Jul -15 Oct -15 ]an -16 May -16 Aug -16 Nov -16 Mar -17 0 569YD00S * 569YD012 • 569YD014 569YD016 6569YD017 0 569YD018 6 569YD019 0 569YD020 Source: Fayetleville DBP LRAA and OEL Reports FIGURE 7.1.3 HAAS Locational Running Annual Averages (µg/L) 80 70 MCL = 60 µg/L 60 50 40 30 20 0 10 0 Dec -14 Apr -15 Ju�15 Oct -15 Jan -16 May -16 Aug -16 Nov -16 Mar -17 +569YD008 P 569YD012 4569YO014 569YD016 •569YD017 : 569YD018 r569YD019 0 569YD020 Source: Fayetteville DBP LRAA and OEL Reports Fayetteville Master Plan Study 7.6 Design Phase Analysis The proposed improvements to the system were divided into three design horizons. The immediate design horizon is from the present day to the year 2022 and is designated as Phase I. The intermediate design horizon is from 2022 through 2027 and is designated as Phase II. The long-range design horizon is designated as Phase III and is for the years 2027 through 2037. Each design horizon was analyzed for transmission capacity, system storage requirements, in -system transmission requirements, fire flow needs, low-pressure areas and water quality. Appendix A contains a large scale map of the recommended improvements for all three phases of work. 7.2 Phase I Improvements, 2017 - 2022 Phase I includes the recommended system improvements required by the year 2022. These improvements include new elevated storage tanks, pump stations and construction of additional transmission and distribution waterlines to help with the conveyance of water throughout the system to meet the City's future needs. Area Specific Analyses This section includes site specific areas that the City of Fayetteville requested MWY analyze and provide recommendations to mitigate certain issues that are unique to the area. Township Pressure Plane Improvements As discussed in Section 4.0 of this report, the storage volume of the existing Township tank is 0.075 -MG. Due to growth within the Township pressure plane, the tank, which was constructed in 1976, is no longer adequate to meet the current or projected customer demands or provide the necessary fire protection. For these reasons, a new 250,000 gallon elevated tank and pump station are recommended. With the increased pressure plane demands, the larger tank should provide longer periods of continuous water service in the event of a line break or pump station issue. The additional storage should also give the City's water department more flexibility to mitigate such issues by providing repair crews more time to mitigate the problems. With the construction of a new tank, it will also be necessary to construct a new pump station. The recommended pump station will convey water to the new tank and be controlled by the tank water level, and will replace the existing pump station along Ash Street. The proposed pump station will be able to pump a larger volume of water than the existing station, and assist the new tank with fire flows when necessary. The new station will also be equipped to operate without the new tank as well. This feature will allow the customers within the pressure plane to maintain service when it is necessary take the tank out of service for periodic maintenance inspections, painting, etc. Under the current system configuration, the Township tank cannot be taken out of service without all customers losing water service. Fayetteville Master Plan Study 7 - 7 Figure 7.2.1 is a schematic showing the approximate location of the new tank and pump station. FIGURE 7.2.1 Township Pressure Plane Improvements O t4 z Sili{i�S +unship `it -0 WP»S e s r n � r y pp L,i C I � ' of j 4 4 t fifSii E .wpbs m v r t 7 t1�u q r Source: InfoWater Hydraulic Model Fayetteville Master Plan Study 7.8 To assist certain areas within the Township pressure plane with fire demands, MWY also recommends constructing two 8 -inch waterlines as well. The first recommended line is approximately 400 linear feet (Line T-1) and is located in the northwestern region of the Township system and loops a dead-end 6 -inch waterline to an existing 8 -inch waterline running along Sherwood Lane (see Figure 7.2.2). The second waterline is also located in the same vicinity and would connect to the 8 -inch waterline just south of the Sherwood Lane and Wendy Brooke Lane intersection (Line T-2). The proposed line is approximately 570 linear feet and would tie to an existing 6 -inch line on Emerald Avenue (see Figure 7.2.2). Based on the hydraulic model, the installation of these lines will greatly enhance the fire flows for the customers located in this region as well as improve water quality. FIGURE 7.2.2 Township Pressure Plane Waterline Improvements Source: WoWater Hydraulic Model Fayetteville Master Plan Study 7.9 East Fayetteville Improvements Phase I improvements also include providing additional storage and transmission capacity to the customers in east Fayetteville. The existing infrastructure in the Gulley pressure plane (see Section 4.0) provides water service and fire protection to the customers located within the boundaries of the pressure plane, and itis also the only source of water for the Goshen system as well. The Goshen system currently receives water from the Gulley pressure plane through the Slaughter Mountain valve located on Hwy. 45. The existing Gulley tank and pump station were constructed in 1999, and based off results from the hydraulic analysis, the demands in the Gulley and Goshen systems have reached levels where the existing Gulley infrastructure can no longer meet water demands and/or provide adequate fire protection for all customers in both systems. MWY modeled four (4) different scenarios to mitigate the issues in the two pressure planes. Each scenario included constructing new water storage (i.e. ground, elevated) and pumping facilities or refurbishing existing facilities. They are as follows: • Sassafras Hill Improvements (see Option 1) • Alternate Gulley Tank Site Improvements (see Option 2) • Gulley/Goshen Split (see Option 3) • Upgrades to Existing Infrastructure (see Option 4) It is important to note that the master plan for the existing Gulley tank site (provided by City of Fayetteville in 2011) includes provisions for future ground storage and elevated tanks to serve Fayetteville's Primary and Goshen pressure planes. The site also allows for a future fire station to be constructed. The following paragraphs detail four (4) different options regarding infrastructure improvements that were analyzed to meet the necessary needs of both the Gulley and Goshen pressure planes. Option I — Sassafras Hill Improvements The Sassafras Hill improvements, which were included in the 2011 Fayetteville Water Master Plan, included a new ground storage tank to be located east of Sassafras Hill Road on property that would need to be purchased by the City. This scenario also included the construction of 18 -inch and 12 -inch waterlines. According to the analysis, the improvements associated with this scenario would still work; however, due to expensive land costs in this area and the anticipated disruption to property owners along the two (2) proposed waterline alignments during construction, this option was deemed to be the less viable option as compared to the ones discussed in more detail below (see Options 3 and 4) and screened from further consideration. Option 2 — Alternate Gulley Tank Site Improvements MWY also modeled and analyzed constructing a ground storage tank at the existing Gulley Road tank site as well. Other improvements included the construction of two (2) 18 -inch waterline segments and a new pump station that would be necessary to Fayetteville Master Plan Study 7.10 pump water to the Goshen tank. This scenario potentially could have less cost to the City than other options discussed since the City would not have to purchase a large tract of land to construct a new tank. Another benefit would be that ground storage tanks are typically less expensive than elevated due to cons tructability, height, etc. Based on the analysis, this scenario was able to meet the demands in the Goshen system; however, this scenario was not able to maintain normal, day to day system pressures above 20 -psi (specifically in the higher elevated areas along Hwy. 45 between Gulley Road and Rivercrest Road). Due to this reason this option was also screened from further consideration. Option 3 — Gulley/Goshen System Split The infrastructure improvements associated with this option include a 750,000 gallon elevated tank to be constructed at the existing Gulley Road tank site in the eastern region of the water service area. The addition of the elevated tank, along with accompanying pump station and waterlines, would enable the City to convey more water to the Goshen system. If the report demand projections are correct, within the next 5 -years the existing Gulley pump station will need to be completely upgraded to be able to pump the amount of water necessary to meet the future demands in both systems. Furthermore, the total usage for each system will equal more than 1.2 -MG by 2022, during certain periods of a typical average day. Based on this demand, the Gulley system would have less than one day's worth of storage to maintain service in the two pressure planes if there were to be a major line break or other emergency that would prevent water from entering the system. If the emergency event occurred during a maximum day, the two systems would have even less time before water service was interrupted. The new tank, pump station and accompanying waterlines would remove the Goshen system water demands from the Gulley pressure plane and give both pressure planes an adequate water supply for existing and future needs. This would also allow the existing Gulley tank and pump station to serve the Gulley area well beyond 20 years without the need for additional capacity. The new tank would have an overflow elevation of 1,660 -ft msl (same as existing Gulley tank) and would gravity feed water to the Goshen system based on tank levels at the Goshen tank located on Fire Tower Road. The proposed improvements for this option also include a new pump station to be constructed on the tank site property. The pump station would operate based on tank levels in the proposed tank. Based on the hydraulic analysis, the pump station would have a pumping capacity of approximately 2,200 gallons per minute (gpm). Transmission improvements include the installation of two (2) 18 -inch line segments. The first line segment (Line EF -1) would be approximately 3,800-1f (linear feet) and would connect to the existing 18 -inch line along Gulley Road on the suction side of the existing Gulley Road pump station. The waterline's alignment will head south towards the Gulley tank site and tie into the proposed pump station and then continue to the new tank. The second 18 -inch line segment (Line EF -2) would be approximately 4,700-1f and would convey water from the tank to the new Goshen Fayetteville Master Plan Study 7-11 system. This line will leave the tank and take a generally southern course and tie into an existing 12 -inch waterline located along Hwy. 45. Appendix A contains the Distribution Improvements Map which shows the locations and alignment of the improvements described above. The system split will also require a few modifications to the current distribution system configuration along Hwy. 45 (i.e. closing valves, pipe connections, etc.) as well as placing into operation two existing pressure reducing valves (PRV) and relocating the existing 6 -inch flow control valve at Slaughter Mountain that currently separates the Gulley and Goshen systems. The PRV's that will need to be placed into operation are located at the intersections of Crossover Road and Setter Street, and Mission Boulevard (Hwy. 45) and Box Avenue. The PRV's are the boundary separation between the Primary and Gulley systems, and are presently closed and do not let water pass between the two systems under any circumstances. However, according to the fire analysis, customers located in this region of the Gulley system currently experience fire flow limitations. Placing into service these PRV's will increase fire flows in this region by supplementing water from the Primary system. Under normal system operation (i.e. no fire flows), the pressure setting of the PRV's should be set such that the valve would remain closed and not allow water to pass form the Primary pressure plane; however, if a sudden pressure drop in the Gulley system should occur (i.e. fire demand) the PRV's would open and allow water to enter the Gulley pressure plane and supplement water to the system during the duration of the fire event. If Option 3 is constructed, it will also be necessary to abandon the existing 6 -inch and 3 -inch flow control valves (FCV) on Slaughter Mountain as well, and construct a new valve vault near the intersection of E. Paul Pray Dr. and Hwy. 45 in the City of Goshen. The existing 6 -inch FCV currently operates (i.e. opens and closes) based on the tank levels in the Goshen tank; however, as demands increase in the Goshen system, the existing Goshen tank will not have sufficient capacity to maintain adequate system pressures for the customers located along Hwy. 45 downstream of the existing FCV during the times the valve is closed. The new valve vault at E. Paul Pray Dr. will greatly decrease the total number of customers that are solely dependent on the Goshen tank for water supply and pressure when the proposed valve is closed, and place the customers located upstream from the new FCV on the aforementioned new East Fayetteville tank. Figure 7.2.3 illustrates the locations of the minor work to be completed. Another advantage to separating the two pressure planes is that interconnective piping can be constructed between the existing Gulley Road tank and the new 0.75 -MG East Fayetteville tank. This new piping would allow for either tank to serve both systems on a temporary basis. This added feature gives the City flexibility to take either tank out of service for routine maintenance, repairs, painting, etc. and still maintain limited service to its customers. Fayetteville Master Plan Study 7.12 FIGURE 7.2.3 Miscellaneous East Fayetteville Improvements Sourcc: lnfoWatcr Hydraulic Modd Once these proposed improvements are installed, the boundaries of the new Gulley and Goshen pressure planes will change, which is shown in Figure 7.2.4. Fayetteville Master Plan Study 7-13 p7i sBut�dg anlB W6 o� Habbo� nay LU m w Z J J CL Z Lu W (Y L N W L PH Aapnp' 0 o aJ A30 pip YofZ P-pi4mo 9 C A' 9 I. N M to«',e 0.d C: I N N W LL V 0y 'a SQ�c sloe C i` �o a A �6• � a Z W u W Z19 J 0 d Q LD LU m LU tY "eWAM V 3 F- w to LL C LL fl 9 > m C Y 3 O PM uopagge" 01 LU m w Z J J CL Z Lu W (Y L N W L PH Aapnp' 0 o aJ A30 pip YofZ P-pi4mo 9 C A' 9 I. N M to«',e 0.d C: I N N W LL , g5 `Pa �� uRUJAAi � J- a A �6• � r Q ell< 9� "eWAM c 4 r'. 5 y5�' re e a L7 v T � U E 'o r Option 4 — Upgrades to Existing Infrastructure The fourth option includes maintaining the current system configuration, with Gulley continuing to be the main water source for the Goshen system. Maintaining the existing configuration will; however, require upgrades to the existing Gulley pump station. The existing station has a total of three pumps with a capacity of approximately 2,100-gpm (two pumps running simultaneously). The Arkansas Department of Health (ADH) requirements state that a pump station must have a redundant pump of equal size as the largest pump in the station to serve as a back-up in case of a pump failure to the main. This ensures that if one pump fails, there is a back-up that can be used to meet the demands as the other is being repaired. Based on this criterion, the existing Gulley station is very near to capacity since there is currently two pumps in operation during each pumping cycle. According to City water staff, there have recently been short periods, during a maximum day demand scenario, where the existing station has strained to maintain adequate water levels in the existing Gulley tank. This will only worsen, as demands increase in the Gulley and Goshen systems. To meet these future demands, the existing pump station will need to be upgraded to flow approximately 3,400-gpm. These improvements will enable the pump station to fill the existing Gulley tank and meet the maximum day demands as well as the provide adequate flows for fire protection. Although these proposed improvements are less expensive than splitting the two systems, it is important to note that the increased flows generated by the upgraded pump station do have a negative effect on the distribution lines in the Gulley system. Currently, an existing 16 -inch waterline supplies water from the existing pump station to the Gulley Road tank. At the tank site the waterline size reduces to a 12 -inch, which conveys water south to the existing 12 -inch that runs along Hwy. 45. According to the hydraulic model, these lines begin to operate at or near recommended capacity, especially in the 10 and 20 -year design horizons, due to the increased flows. Waterlines are considered to be at capacity once they consistently experience velocities exceeding 5.0 feet per second (fps). This is based on engineering experience and judgment, which suggests that energy/pumping costs become infeasible due to excessive friction losses in the waterlines once the velocities exceed 5.0 -fps. In addition, higher velocities greatly increase friction losses and contribute to lower system pressures, effectively diminishing capacity to convey water. Recommendation Based on the analyses detailed above, MWY recommends that the separation of the Gulley and Goshen systems (Option 3) would be the most advantageous to the City and the customers located in each pressure plane. As stated, the short-term capital improvements associated with Option 4 are less expensive than the ones described in Option 3. However, if Fayetteville Master Plan Study 7.15 the projected demands for these areas follow those detailed in Section 3 of this report, Option 4 may require the city to begin paralleling waterlines within the next 10-20 years to increase distribution capacity and meet the domestic water and fire protection needs of its customers. The fourth option also does not give the City flexibility with providing continued water service if the need arises to take the Gulley Road tank out of service for maintenance and/or repairs. Gulley Pressure Plane Distribution Waterline Improvements During the East Fayetteville fire flow analysis, the hydraulic model identified areas within the Gulley system that could not meet the fire flow requirements set forth in this report. Based on the water model, the areas in the Bridlewood Drive vicinity, which is located northeast of Sassafras Hill Road, experienced fire flows below the 1,500-gpm requirement. Currently, this area is served by a 6 -inch waterline that runs along Sassafrass Hill Road. Due to the additional growth in this region, the existing 6 -inch waterline is no longer capable of providing adequate fire protection. These fire flow problems are further complicated by the high elevated areas on Sassafras Hill as well. To help mitigate these issues, MWY recommends constructing an 8 -inch waterline (Line EF - 3) from Saddleridge Drive to an existing 8 -inch on Drexel Drive. Another segment of 8 -inch line is proposed to be constructed from the Drexel Drive and Sassafras Hill intersection to the existing 8 -inch located at the intersection of Lamar Pettus Rd and Sassafras Hill (see Appendix A). This will provide a continuous 8 -inch feed from the existing 16 -inch transmission line along Gulley Road to the Bridlewood area. Fayetteville Master Plan Study 7-16 Benson Mountain Pressure Plane Improvements The Benson Mountain system is located in the far eastern region of the service boundary, southeast of the City of Goshen, and is conveyed water through the Benson Mountain pump station, which is located at the Goshen tank site (see Section 4.0). The Benson system is relatively small and mainly contains waterlines that are 4 inches in diameter and less. Although the Benson Mountain system has very few customers, it currently serves approximately three large poultry operations. These operations have approximately 18 poultry houses combined. Due to the size of the existing tank, pump station and waterlines in the system as well as the location of some of the poultry operations, the current system configuration was not designed to serve this type of daily demand charge. To help maintain adequate service to all customers within the Benson system, MWY analyzed various system improvements to mitigate any present or future supply and pressure issues that may be caused from the demands generated by these operatidns. A brief description of these improvement options is detailed in the following paragraphs. Option 1 This option includes upgrades to the existing pump station and installing a new 4 -inch waterline. The existing pump station is equipped with two pumps that have a rated capacity of approximately 40-gpm. The station is controlled by the tank levels in the existing 35,000 gallon Benson Mountain standpipe tank. According to the analysis, to meet the domestic and poultry demands in the system a new pump station with a rated capacity of approximately 120-gpm will be necessary. The new pump station would operate based off tank levels in the existing tank, just as the current station does presently. The additional capacity generated from the new pump station along with the storage in the existing tank will assist in meeting the current and projected demands in the system. Option 1 also requires that approximately 2,200 linear foot of 4 -inch waterline (Line B-1) be installed along Fire Tower Spur S. Road. This new waterline will close a "gap" that currently exists in the Benson Mountain distribution system where currently no waterline exists. The customers located along N. Hicks Road are currently located on a dead-end waterline and are at the furthest reaches of the Benson system. The new 4 -inch waterline will create a "loop" that will allow these customers to receive water more efficiently and assist in maintaining a more constant pressure during high demand periods. Figure 7.2.5 shows the Benson system with the proposed improvements. Fayetteville Master Plan Study 7.17 FIGURE 7.2.5 Benson Mountain Pressure Plane Improvements Source: InFoWater Hydraulic Model Option 2 Option 2 includes upgrades to the existing pump station as well, but it also includes replacing the existing tank with a new elevated tank. Referring to the Township improvements paragraph, the existing Township tank is to be replaced with a larger tank to meet the increased demands in that system. Utilizing the hydraulic model, MWY analyzed replacing the existing Benson system tank with the current Township elevated tank. Due to the increased height of the Township tank, the Benson system would see a pressure increase of approximately 19 -psi. The Township tank would Fayetteville Master Plan Study 7-18 also increase the storage capacity of the system by 40,000 gallons (75,000 -gal compared to 35,000 -gal). The pump station upgrades detailed in Option 1 will still be necessary with the relocated Township tank. With the additional pumping and storage capacity, the 4 - inch waterline in Option 1 would not need to be constructed. Recommendation Based on conversations with a tank manufacturer, relocation of the existing Township tank could be an expensive alternative compared to constructing a new tank in the Benson Mountain pressure plane. The tank, which is of steel construction, would have to be dismantled in such a careful manner that it could be transported and re -erected properly. The tank manufacturer stated that they generally do not perform this type of work because of associated risks. Although they did state that there were smaller companies that do this type of work in their experience once completed, the tank looks like a cut down, re -erected tank and does not usually meet current design standards. The manufacturer also stated that due to the year the tank was constructed, 1976, that there is probably lead in the tank paint and that it would be very expensive to remove and repaint. Due to the reasons stated above, MWY recommends that the City construct the improvements associated with Option 1. It is important to state that the City has been in discussions with the poultry operation owners regarding the limitations of the Benson system and have taken precautions to protect the other customers by restricting the amount of water the poultry operations can receive at the present time. It is our understanding that these usage restrictions will remain in place until system improvements are installed and operational. 2017 - 2022 System Storage Requirements Based on recent discussions between MWY and the ADH regarding adequate storage for water systems, the City of Fayetteville currently has in place sufficient operational system storage for the next twenty years (see Section 6.2). Currently, the Fayetteville distribution system contains approximately 29.0 -MG of storage, with 27.0 -MG residing in the Primary pressure plane. However, two new elevated tanks, which were discussed in the Area Specific Analyses section, have been included in this phase of work to assist with increasing customer demands and fire protection. 2017— 2022 System Transmission Line Improvements Through the use of the hydraulic water model, MWY analyzed the water system to identify any areas where distribution system transmission line improvements were necessary to meet the projected demands in the Fayetteville water system. These "in -system" transmission lines are generally 16 inches in diameter and greater and assist with closing gaps and/or the conveyance of water to areas with large customer demands and existing or proposed storage tanks. Fayetteville Master Plan Study 7.19 The results from the Phase I analysis indicated the need for the construction of approximately 5,300 linear feet of 18 -inch ductile iron transmission line (Line 1-1) in the southeast region of the system. The new line would connect north of the Huntsville Road (Hwy. 16) and Crossover Road (Hwy. 265) intersection to an existing 24 -inch transmission line, which runs north and south along Crossover Road. The new line would take an easterly alignment and connect to the existing 12 -inch located near the intersection of Huntsville Road and Cunningham Lane. The Distribution Improvements Map located in Appendix A illustrates the location of the proposed transmission line. The existing system configuration along Hwy. 16 currently includes an 8 -inch waterline section that begins just east of Dead Horse Mountain Road, which has an east -west alignment along Hwy. 16 to nearly Cunningham Lane. The 8 -inch line is tied on the east and west ends to existing 12 -inch waterlines. As the demands increase in the southeast region of the City and in the City of Elkins, the existing 8 -inch begins to restrict the amount of flow that can be conveyed to the area. Due to this "bottleneck" limiting the conveyance of water, the analysis identified future supply, pressure and fire flow issues during maximum day periods. The construction of the proposed 18 -inch waterline will eliminate the bottleneck, and the issues observed in the hydraulic model during the analysis can be mitigated. It is important to note that additional sections of 18 -inch transmission along Hwy. 16 will need to be constructed in later phases of work to meet the projected domestic and fire demands for this region of the system. 2017 — 2022 Distribution Line Improvements In conjunction with the large diameter transmission line proposed for Phase 1, there is also the need for a 12 -inch diameter distribution waterline in the southern region of the water service boundary near the City of Greenland. Currently, the cities of Greenland and West Fork, the Mt. Olive Rural Water Association, as well as a number of industrial customers and the Fayetteville airport along S. School Avenue (Hwy. 71) are basically served from a dead- end waterline. Another water conveyance issue for this region is due to a bottleneck that is formed by a segment of 8 -inch waterline approximately 3,200-1f in length. This segment of 8 -inch waterline is located between the 12 -inch waterlines located at the Hwy. 71 intersections of Lester Avenue and Whillock Street. As demands increase, the velocities in the segment of 8 -inch increase significantly and decreases the amount of water that can be conveyed to this region of the system. The construction of the recommended 12 -inch line will also provide this region with an alternate route for receiving water, help to mitigate possible instances of interrupted water service due to waterline breaks and assist with fire protection, especially at the Greenland schools located south of the Fayetteville airport. Two different alignments for the recommended waterline have been analyzed, and are described in more detail below. Fayetteville Master Plan Study 7-20 Option 1 The 12 -inch (Line I -2a) alignment included in Option 1 ties into the existing 12 -inch waterline stub -out located south of the Fulbright Expressway (see Appendix A). The waterline is approximately 6,300-1f and takes a generally southern alignment along the railroad to Sunrise Mountain Rd. The proposed line then heads east along Sunrise Mountain Rd. and connects into the existing 12 -inch waterline on Hwy. 71. Option 2 The alignment for this option ties into the existing 12 -inch located at the intersection of S. School Avenue and Lester Street (see Appendix A). The waterline heads south along School Avenue and ties just north of Sunrise Mountain Rd. into the existing 12 - inch along Hwy. 71. This waterline (Line I -2b) segment is approximately 3,100-1f in length. Recommendation According to the analysis, either option will meet the intended general purpose of providing the necessary flows to meet the domestic demand and fire protection needs of this region of the system. However, Option 1 would give the City a separate water feed into the area and could help maintain water service to customers if the existing 8 and 12 -inch waterlines along Hwy. 71 should experience a line break. Option I may also be easier to construct due to the fact that its alignment is generally located in more undeveloped, open ground. Based on existing maps, there will be numerous obstacles to navigate with the second option's alignment located along Hwy. 71 (i.e. traffic, business's/industries, existing utilities, etc.). Based on MWY's preliminary analysis and review of the area, Option 1 seems to be the best selection for constructing the proposed 12 -inch waterline (Line I -2a). However, MWY suggests that a more detailed preliminary study be performed during design to determine the most feasible and economical option for construction. There are also a number of areas identified throughout the distribution system that currently have unnecessary dead-end waterlines in close proximity to other existing lines. If feasible, a general recommendation is to mitigate dead-end waterlines within the interior of the distribution system. This interconnectivity of the water system allows for better fire protection, water quality and assures that there are multiple feeds into an area in case of waterline breaks. Referring to the Distribution Improvements Map, the construction of a 12 - inch waterline (Line I-3) on Persimmon Street and 8 -inch waterlines on Vanike Drive (Line 1-4), Hunters Ridge (Line 1-5) and Victoria Lane (Line 1-6) will eliminate existing dead-end waterlines and help these areas provide an adequate water supply and/or assist with fire protection. MWY also recommends connecting the existing 12 -inch line and 24 -inch transmission line at the intersection of 15'h Street and Morningside Drive to assist with the conveyance of water in this region (Line I-7). Fayetteville Master Plan Study 7.21 2017 — 2022 Development Waterline Improvements As stated in Section 6.4, a 12 -inch water transmission main grid is recommended to help support fire flows and to supply peak demands within the system. The recommended spacing of the transmission main grid is approximately one-half mile. In practice, the line spacing will depend on the corridors available for water line construction, the location of existing and future streets and the pattern of development in a given area. The development waterlines shown on the Distribution Improvements Map in Appendix A illustrate approximate recommended locations for 12 -inch waterlines based upon the hydraulic model analysis. The need to constrict a given 12 -inch waterline main is not tied to any particular phase of work but moreover dependent on the location and intensity of the development. It is also important to note that the waterline alignments shown in the map may change due to development corridors, buildout, etc. 2017 — 2022 Miscellaneous System Improvements During MWY's analysis of the system, it was observed during a normal maximum day operation that the Kessler Mountain tanks failed to completely reach their overflow level of 32 feet msj. Based on the hydraulic model, there were instances where the tanks operated approximately 6 -ft below the overflow, which equates to a loss of approximately 2,000,000 gallons of storage in the system between the two tanks. To verify the model results, historical SCADA (supervisory control and data acquisition) data for the Kessler Mountain tank levels was requested from BWD. Review of the data received verified that the tanks would operate at a lower level during peak demand periods of the year. According to the model, as the demands in the system increase in the future phases, this issue with the Kessler tanks becomes worse. Along with the Baxter Lane, Rodgers Drive and Markham Hill tanks, the Kessler Mountain tanks are located on the Primary pressure plane and are supplied water directly from BWD. However, the model analysis showed that the other Primary pressure plane tanks did not react in the same manner as Kessler, and in fact operated closer to their overflow levels. To determine the reason for the decrease in water conveyance to the Kessler Mountain tanks during maximum day conditions, MWY analyzed the transmission mains which are primarily responsible for conveying water to the tanks. Currently, 36 -inch and 30 -inch diameter transmission mains are the primary source of water supply to the existing tanks. The 36 -inch is directly tied to both the 42 -inch and 36 -inch transmission lines that come from BWD and enter the Fayetteville system on the northeast side of the city. The analysis revealed; however, that the existing transmission lines were not at full capacity and were not the reason for issues with the Kessler tanks. The next step was to determine if demands in the system had reached the point that an additional transmission line from BWD was necessary. Preliminary planning has begun to construct a 48 -inch diameter transmission main from BWD in the future. The proposed line will provide Fayetteville with a third supply line from BWD and assist the City with meeting Fayetteville Master Plan Study 7-22 the projected domestic and fire needs in the future. However, the model analysis showed that the proposed additional transmission from BWD had little effect on the Kessler tank levels. Analyzing the system in the western region shows that there are multiple connections from the existing 36 -inch transmission line to other distribution lines in the system between Van Ashe Street and the Kessler tanks. These connections are necessary for maintaining a steady water supply and for providing fire protection to all customers on the west side of the water service area. However, as the daily demands in the western region increase, more water must be conveyed through these connection points to meet the immediate needs of the customers. Since the Kessler Mountain tanks are located at the end of this transmission and at a higher elevation, there is less pressure in the system to help fill the tanks. To mitigate this is§ue, MWY recommends the installation of a new pump station to be located near Plumberosa Drive on the existing 30 -inch transmission line (see Figure 7.2.6). The controls for the proposed station would continue to allow for the tanks to fill by gravity, as they do today; however, if tank levels continue to fall, the station would begin pumping until the tanks have reached there fill level. Based on the analysis, the pump station would need an approximate capacity of 3,500-gpm. FIGURE 7.2.6 Kessler Mountain Pump Station l I l� Kessler Meu &otage T Source: lnfoWater Hydraulic Model Fayetteville Master Plan Study 7-23 2017 — 2022 Fire Flow Analysis The exhibits contained is Section C2 of Appendix C shows the areas that experienced marginal fire flows according to the hydraulic model during the analysis. As with the existing fire flow analysis, most areas that are below the minimum fire flow requirement are on dead-end waterlines and/or in the peripheral of the distribution system. Section C2 also contains the corresponding tables which detail the marginal fire flow areas identified in the exhibits. During the fire flow analysis, it was observed in the model that approximately four (4) locations consistently experienced a significant pressure drop (i.e. negative pressures) during a fire flow of surrounding area fire nodes. These low pressures, in turn, were a signficant influence on the reported amount of water a fire node could flow while maintaining adequate pressure in other areas of the distribution system. A review of these locations showed that they are located in high elevated areas and supplied by water lines less than 4 inches in diameter. The areas in question are located along Dinsmore Trail in the western region of the system, Wallin Mountain Road in the southern region, and Ed Edwards Road and Van Hoose Drive in the southeast part of the water service area. According to the analysis, the pressure in all of these areas decrease to negative digits during a 1,500-gpm fire flow. However, once these areas were removed from the critical search range, the observed issues were practically mitigated at the surrounding fire flow locations. Based on this information, MWY recommends that mitigation measures be implemented that would isolate these small areas, at least during a fire event, so that the customers located in the aforementioned areas will maintain adequate pressure during a fire flow event. One way to achieve this is by installing booster pumps at these locations. The pump stations would be configured to operate only when sensing a pre -determined pressure drop in these problem areas. Once the station detects this drop in pressure, the pumps operate to maintain a constant downstream pressure until the fire event is over. The booster pump locations are shown on the Distribution Improvements Map in Appendix A. It is important to note that the fire flow analysis assumes that all recommended Phase I improvements are in place and operational. 2017 — 2022 Low Pressure Analysis The low pressure analysis was performed during the maximum day for the design year of 2022. Exhibit D2, located in Appendix D, illustrates the approximate location of the low pressure areas. The majority of the low pressure areas can be attributed to high ground elevations and areas in the outer reaches of the system. Table D2 details the results from the low pressure analysis. 2017 — 2022 Required Maintenance Improvements The existing water system contains approximately 160 miles of pipeline less than 6 - inch in diameter that are incapable of supporting minimum fire flow requirements. Approximately 50 miles of these pipelines are galvanized or cast iron pipes 2'/z - Fayetteville Master Plan Study 7.24 inches or smaller, which have a maximum service life of approximately 30-40 years. Galvanized pipes develop significant accumulation of scale on the inside of the pipe, generally reducing their functional diameter by 90% in the service life period. The smaller cast iron waterlines experience similar tuberculation, with similar decreases in capacity. These waterlines can be more susceptible to developing small leaks which may cause an increase in water loss and reduced pressure in localized areas. MWY recommends that the City replace these waterlines as soon as financially possible. While many of the small diameter and older waterlines were included in the hydraulic water model, the model cannot accurately portray deteriorated or leaking waterlines and how they operate within the distribution system. 2017 — 2022 Water Quality Analysis As discussed in the "Existing Water Quality Analysis" paragraph of Section 7. 1, MWY performed a water quality analysis for the Fayetteville distribution system with Phase I improvements installed to evaluate any problem areas that may exist within the future system. The water quality analysis consisted of evaluating the chlorine residual and residence time (age) of the water. Exhibit E2 illustrates the areas that are predicted to experience marginal chlorine residuals (0.01 or lower) within the Fayetteville water service area, according to the hydraulic model. Referring to the figure, most of these areas are located at the extremities of the distribution system, on dead-end waterlines and/or areas with little usage. The chlorine residual issues in the areas around the Canterbury tank that were previously discussed in the Existing System analysis are also present in this phase as well. As stated, MWY recommends that the City perform additional analyses to determine what measure(s) should be implemented to mitigate the low residual issue. The areas that experienced marginal residence time (age) are shown in Exhibit F2 in Appendix F. The water is considered marginal when the age of the water is three (3) days or greater at any location within the system. Most of the marginal areas shown in Exhibit F2 are located on a dead-end waterline which creates an operational problem with keeping the water fresh. In the low demand areas, looping dead-end waterlines back into the main grid of the system may improve the water age. However, as previously stated in this report, some areas are not conducive and/or cost prohibitive to loop dead-end waterlines due to location and/or topography. In these areas it is recommended to create a waterline flushing schedule to help maintain "fresh" water. As with the fire flow and low pressure analysis, the water quality analysis is performed with all recommended improvements for Phase I added to the hydraulic model. Fayetteville Master Plan Study 7-25 7.3 Phase I/ Improvements, 2022 - 2027 The main improvements recommended for this phase includes the continued installation of an 18 -inch distribution waterline in the southeastern region of Fayetteville. Due to the expected growth in this area, the new waterline will assist the City in providing adequate water service and fire protection. 2022 — 2027 System Storage Requirements Based on the criteria discussed in the Phase I improvements section, there is no recommendation to construct additional system storage during this phase of work. 2022 — 2027 System Transmission Line Improvements Phase II improvements include the construction of approximately 4,900 linear feet of 18 -inch transmission (Line II -2) along Huntsville Road (Hwy. 16) in the southeastern region of the system. The proposed line is necessary to meet the continued growth of the area and the bulk sale customer, Elkins. This section of the 18 -inch transmission will tie into the existing 12 - inch waterline located west of Hoddle Place and run generally east along Hwy. 16 and connect to an existing 8 -inch waterline on Tallgrass Drive. The map located in Appendix A illustrates the proposed route of the waterline. 2022 — 2027 Distribution Line Improvements Based on the analysis, no specific distribution lines will need to be constructed during this phase of work, except for ones driven by development. 2022 — 2027 Development Waterline Improvements As stated, the proposed 12 -inch waterline grid is based upon the hydraulic model analysis and engineering judgment. Depending on where and when development occurs will play a large roll on the exact location, route and time period for the construction of the 12 -inch waterline grid. The need to construct a given 12 -inch waterline main will depend on the location and intensity of development. 2022 — 2027 Fire Flow Analysis Exhibits illustrating the fire flow results for the City of Fayetteville for the 10 -year design horizon are located in Section C3 of Appendix C. Referring to the exhibit, most areas that demonstrated fire flow deficiencies were located on small diameter waterlines and/or dead- end waterlines. The corresponding tables detailing the results from the fire flow analysis are also located in Section C3 of Appendix C. Usually, fire flow deficiencies located in the main system grid can be mitigated by looping the dead-end waterlines back into the waterline grid. However, as stated previously in this report, each area that experiences fire flow problems will need to be addressed by the Fayetteville staff on a case by case basis to determine the Fayetteville Master Plan Study 7-26 feasibility of the project. As with Phase I, the results from the fire flow analysis assume that all recommended Phase II improvements are in place. 2022 — 2027 Low Pressure Analysis Exhibit D3 and Table D3 located in Appendix D show the locations and the detailed results, respectively, of the areas which could not meet the minimum requirement of 40 -psi during a typical maximum day. Most of these areas can attribute the low pressure to high elevations. The low pressure analysis results assume all recommended improvements are in place. 2022 — 2027 Water Quality Analysis Exhibit E3 shows the areas that experienced a marginal chlorine residual (0.01 mg/L or less) within the distribution system during the design horizon of 2027. As with the previous phases, a majority of these areas are located on dead-end waterlines and/or the outer limits of the water service boundary. The exception is the previous discussed area surrounding the Canterbury tank located off of Canterbury Lane in the eastern region of the city. Exhibit F3 shows the results from the residence time (age) analysis. As mentioned, the water is considered to be "old" if during a typical average day the water has been in the distribution system for three days or longer. Due to the almost daily change of the water distribution system, MWY recommends that a water quality analysis be performed closer to the actual design years to achieve more accurate results. Chlorine residuals and residence time of water are greatly affected by demands and the configuration of the distribution system waterline grid. Fayetteville Master Plan Study 7-27 7.4 Phase 111 Improvements, 2027 - 2037 Phase III of this report analyzes the long-range improvements needed to aid in the systems everyday operations and maintain an adequate water supply to all residents located within the distribution system. Based on the hydraulic water model analysis, these improvements include a new transmission waterline from Beaver Water District (BWD) to the City of Fayetteville. This phase of work also includes the continued construction of an 18 -inch "in - system" transmission line proposed in the Phase I and Phase II improvements for the southeastern region of the system. 2027 - 2037 System Storage Requirements Referring to Table 6.1.1 in Section 6.0 of this report, the system storage calculated for the City of Fayetteville will reach approximately 23.0 -MG by the end of the design horizon of 2037. The total existing system storage equals approximately 29 -MG, and should be sufficient to meet the needs of the water system based on discussions between MWY and the ADH. It is also important to note that the recommendations detailed in this report include the construction of an additional 0.92 -MG (i.e. East Fayetteville, Township) of storage, which will increase the City's total system storage to approximately 30 -MG. 2027 — 2037 Transmission Line from Beaver Water District With the projected population growth for the city of Fayetteville, Phase III improvements include an additional transmission line to be constructed from BWD. Currently the city is fed through two transmission lines from BWD, a 36 -inch and a 42 -inch. These two lines tie into the system on the east side of Fayetteville in the vicinity of Joyce Street and Crossover Road (Hwy 265). Figure 7.4.1 illustrates the approximate route for a new 48 -inch transmission line (Line III -1) from BWD. Using the hydraulic model, the analysis showed that a 48 -inch diameter transmission line would need to be constructed to transport the amount of water the City of Fayetteville will require for continued growth. Referring to Figure 7.4.1, the transmission line is recommended to tie into the west side of the Fayetteville distribution system. This scenario will give the city multiple points of entry into the distribution system and help with the conveyance of water to the western region of the water service area. The proposed 48 -inch transmission line will be constructed from a new BWD site that will be constructed near the City of Elm Springs. From the new west side BWD site, the 48 -inch transmission line will head in a general southerly route through the cities of Elm Springs and Tontitown crossing Hwy 412 and continuing south into the City of Fayetteville. The line will turn east and tie into the existing 36 -inch waterline located near the Hwy 112 and Van Asche Drive intersection. A transmission line route study has already been completed by others, and the City has begun to procure easements. Fayetteville Master Plan Study 7-28 Elm Springs PROPOSED BWD WEST 51TE t i lulu, son CONN ECTION TO TRANSMISSION LINE 4 — N1 Source: ArcGlSWorld Topographic1 Tianm Source: MCEWest FIGURE 7.4.' 2027-2037 System Transmission Line Improvements Phase III improvements include the construction of approximately 4,800 linear feet of 18 - inch transmission (Line III -2) along Huntsville Road (Hwy. 16) in the southeastern region of the system. This line segment connects to the 18 -inch waterline at Tall Grass Drive that was constructed in Phase II and heads east along Hwy. 16 toward Elkins. An approximate proposed route of the waterline is shown on the Distribution Improvements Map located in Appendix A. The proposed waterline ends approximately 2,250 feet past Mally Wagon Rd and ties to the existing 8 -inch waterline located south of Hwy. 16. The long-term plan for this area is for the proposed 18 -inch line to tie to a recommended 12 -inch waterline that will eventually convey water directly to the Elkins meter located on Van Hoose Drive. However, the proposed 12 -inch waterline as well as the other 12 -inch lines shown south of Huntsville Road (see Appendix A) are recommended to be built contingent on development in that area. The proposed 18 -inch waterline will give the distribution system more water conveyance to the customers located in the southeastern regions of the City and help meet the growing needs of the City of Elkins, a bulk sale customer of Fayetteville. This will also help maintain the pressures requirements at the Elkins meter and greatly improve the fire protection capacity in this region. 2027 — 2037 Distribution Line Improvements Based on the analysis, no specific distribution lines will need to be constructed during this phase of work, except for ones driven by development. 2027 — 2037 Development Waterline Improvements As stated, the proposed 12 -inch waterline grid is based upon the hydraulic model analysis and engineering judgment. The need to construct a given 12 -inch waterline main will depend on the location and intensity of development. The proposed waterlines are shown on the Distribution Improvements Map. The waterline alignments are an approximation and could change depending on the growth structure and rate of the developing areas. 2027 — 2037 Fire Flows According to the analysis, the areas shown in the exhibits contained in Section C4 experienced marginal fire flows during the 20 -year design horizon. As with the other two phases, most of these areas are located on dead-end waterlines and/or in the peripheral of the water service area. As stated, the most effective way to improve the fire flow production in these areas is to loop these dead-end waterlines back into the main grid of the distribution system. However, because of topography and/or the location of some of these areas it may be cost prohibitive. Section C4 also contains the corresponding tables detailing the results shown in the exhibits. It is recommended to re-evaluate the fire flow analysis at 5 -year intervals to test the impact of development demands and new waterline construction. Fayetteville Master Plan Study 7-30 2027 — 2037 Low Pressure Areas The low pressure analysis was performed during the maximum day for the design year 2037. Exhibit D4 shows the areas that were below the 45 -psi requirement during a typical maximum day. Table D4 details the results from the low pressure analysis. 2027 - 2037 Water Quality Analysis Exhibit E4 illustrates the areas that are predicated to experience a marginal chlorine residual (0.01 mg/L or less) within the distribution system. These areas are generally the same as the ones identified in the previous phases, and are mostly located on dead-end waterlines and/or areas with low demand. Referring to Exhibit E4, the areas located in the vicinity of Canterbury tank still remain an issue, according to the model analysis. As stated previously, further analysis is recommended to verify the model results and to determine what measures should be done to increase chlorine residual levels in this area. Exhibit F4 shows the areas from the residence time (age) analysis. As with the chlorine residual analysis, these areas are mostly located on dead-end waterlines and can be improved by looping the waterlines back into the system grid. As stated in the previous two phases of this report, the daily change of the water distribution system makes it difficult to accurately recommend future water quality improvements to the system. Chlorine residuals and residence time (age) of the water is greatly affected by demands and the configuration of the distribution system waterline grid. Therefore, MWY recommends that a water quality analysis be performed closer to the actual design years to achieve more accurate results. Fayetteville Master Plan Study 7-31 7.5 Automated Valve Assistance The scope of the Master Plan included review and input regarding the existing 24 -inch pressure sustaining valves on the 42 -inch and 36 -inch transmission lines from Beaver Water District. The existing valves are located approximately 250 feet south of U.S. Highway 412. This location is approximately 13,000 linear feet downstream of the existing surge tank located on the high point of the transmission system on Fitzgerald Mountain. Available information reviewed included the following: • A report entitled "Existing 36 -Inch Water Transmission Line Rehabilitation Study," dated August 2005, by Black & Veatch in association with McClelland Consulting Engineers. • A draft design memorandum entitled `Existing Transmission Main Pipeline Modifications," dated November 2005 by Black & Veatch. • A memorandum entitled "Preliminary Transient Analysis", dated August 29, 2006, by Black & Veatch. • A set of construction plans entitled "Existing 36 -Inch and 42 -Inch Water Transmission Main Modifications," dated September 2006, by Black & Veatch. • Submittal data dated January 2007 for the construction project referenced in the plans described above. • A report entitled "Beaver Water District City of Fayetteville Water Transmission Main System Pressure Surge Analysis," dated May 9, 2016, by Flow Science Incorporated. Based on review of the above information, the existing pressure sustaining valves were recommended and installed to maintain a minimum water level in the surge tank and positive pressure in the transmission pipeline for all flow scenarios. The addition of the 42 -inch transmission pipeline provided greater system capacity by lowering friction loss, resulting in a lower hydraulic gradient. However, the lower hydraulic gradient during normal demand periods is not adequate to force water into the surge tank. In fact, the surge tank may act as a vacuum relief valve during certain flow conditions, allowing open -channel (cascade) flow for limited distances in the pipeline. The report by Flow Science predicted that open -channel flow will occur for flows less than 19 -MGD. This conclusion is similar to the findings of the Black & Veatch report dated August 2005, which predicted similar conditions at flowrates less than 20 -MGD. The Flow Science report also stated that operation of the pressure sustaining valves is NOT required for surge protection. However, the potential cascade flow condition may result in air entrainment in the transmission system, and minimum positive pressure in the pipeline is recommended to mitigate contamination from outside sources. The Arkansas Department of Health (ADH) generally requires a minimum of 20 -psi in distribution systems, although the ADH may allow deviations for emergency, short duration conditions such as pressure surge events. During a recent discussion between the City of Fayetteville, MWY and ADH staff, it was stated that the ADH would allow pressures less than the minimum 20 -psi if sufficient Fayetteville Master Plan Study 7-32 justification can be provided. More research and analysis will be required to provide sufficient justification and confirm minimum allowable pressures approved by the ADH. In order to provide minimum positive pressure in the system under most conditions, MWY concurs with the recommendations and analyses in the Black & Veatch and Flow Science reports that use of the pressure sustaining valves is recommended. The existing surge tank is 100 -foot tall and has a 20 -foot diameter, based on the Plans of Record produced by MWY in 1971, with a bottom elevation of approximately 1,600 feet. These plans also indicate a high point flowline for the 36 -inch pipeline at 1,593 feet, which sets the top of pipe at approximately 1,596 feet. The existing pressure sustaining valves, based on the design plans prepared by Black & Veatch, have centerline elevations of approximately 1,371 feet. Based on submittal information, the existing pressure sustaining valves are CLA-VAL Catalog Number 13 1 -BWYBCSENKCX Pressure Sustaining Valves and were supplied by Instrument & Supply, Inc. (ISI) of Hot Springs. The minimum pressure set point will depend on the minimum pipeline pressure required by the ADH. The valves also have a closing speed control. The Preliminary Transient Analysis report by Black & Veatch concluded that a five (5) minute closing time was long enough to minimize surge events. All work associated with the existing automated valves has been completed by MWY based on the scope agreed upon in the Agreement (see Section 1.0). However, per an addendum to the original agreement, MWY will continue to assist the City with analyzing the automated valves. MWY, and the City, plan to coordinate with ISI, ADH and Beaver Water District in the near future to determine the working condition, confirmation of set points and operation of the automated valves. Fayetteville Master Plan Study 7-33 7.6 General Recommendations General Recommendations Regarding Updating of Hydraulic Model For this report, MWY's scope included updating the City of Fayetteville's working 2015 model using the City's current GIS. A majority of effort required in a Master Plan study is the creation/updating and calibration of the hydraulic water model, which is a necessary and useful tool for the analysis of any portion of the water system. The primary purpose of a Master Plan study is to determine major transmission and distribution system improvements to serve the overall system. However, as future developments are planned, the hydraulic water model should be used to determine specific distribution grid requirements in the area surrounding the proposed developments, such as the "minor" water distribution lines suggested in this Report. Therefore, it is strongly recommended that the hydraulic water model be continually updated and calibrated at frequent intervals in the future. By keeping the model up-to-date, analysis for proposed developments and future master plan updates may be made with greater ease and should require significantly less effort. Predicted Growth Patterns vs. Extraordinary Development The recommendations shown in this report were based on the predicted growth patterns, which were input into the hydraulic water model. Although these predicted growth patterns were determined using the best available information (i.e. Fayetteville -City Plan 2030, census information, etc.), some areas may experience growth rates which exceed predicted rates. In particular, large isolated development projects may be proposed which are not included in the expected "normal" growth projections used in the study. The possibility for this type of situation is most probable in the West and Northwest growth areas, although any area of the system could experience higher-than-expected growth. Other locations which could exceed projected growth expectations are the Inner and Outer Core areas as described in the adopted City Plan 2030 and which boundaries are shown in Figure 2.2. The City's current emphasis is to enact regulations and employ strategies to support increased growth, or infill, in the downtown areas of the city (see Chapter 10 -City Plan 2030). Due to this planning strategy and anticipated demand increase affect this should cause for the downtown area, the future growth percentage attributed to the Inner and Outer Core areas is higher than the Existing Service Area (i.e. Non -Core area) as shown in Figure 3.4.1. However, due to the difficulty of projecting the potential types and timing of future developments for these areas, the Inner and Outer Core areas could experience demands above what is projected in this report. In these cases, more analysis may be necessary to determine the required infrastructure improvements to serve these areas. Fayetteville Master Plan Study 7-34 Water Demands vs. Design Horizon Improvements The phased recommendations for each design horizon in this report were based on projected population, projected water demands and historical growth data for the City of Fayetteville. Thus, the improvements were recommended based on actual water demands more than a particular year. Depending on growth patterns, the actual construction time and sequence of each recommended infrastructure improvement in each design horizon can change based on actual population and water demands. Water System Maintenance, Replacement and Internal Capacity Improvements This study focuses on the hydraulic analysis of the distribution system to determine flows and water quality in the existing distribution system as well as projecting future growth, demands and new infrastructure improvements to meet the City's needs for the next 20 -years. The studies scope did not include evaluating the requirements for pipeline, pump station, and water storage asset maintenance and replacement, as these tasks are accomplished on an as -needed basis. Water systems experience increased system maintenance costs and water loss as the system ages due to leaks, meter wear and other operational issues. The Mt. Sequoyah and Markham tanks were installed in 1959 and the original 36 -inch transmission line from the Beaver Water District was constructed in 1969. All of these aging assets will require increased maintenance and ultimately need to be replaced depending on their operational performance. The City currently has a separate priority list of water mains to be replaced based upon maintenance requirements. The City also has potential and/or planned Arkansas Highway and Transportation Department (AHTD) relocations for existing distribution infrastructure that will be necessary due to street widenings, etc. Programming these costs and impacts is beyond the scope of this study, but must be integrated into future operations, maintenance and rate setting studies and programs. Fayetteville Master Plan Study 7-35 M1 OPINION OF PROBABLE COST This section of the report details the opinion of probable costs for the recommended improvements outlined in Section 7.0. The opinion of probable cost is based on current costs of similar construction and is provided for planning and budgetary purposes. Actual costs may vary depending upon actual bids received. The costs shown for all phases reflect present values (2017 dollars) and include an estimate of construction contingencies and engineering fees. The estimates do not include right-of-way expenses, legal fees or acquisition of permits. Tables 8.1 through 8.3 summarize the opinions of probable cost for Phases I, Il, III. Each table separates cost breakdowns for major transmission lines (16 inches and greater) and minor waterlines (12 inches and less), as well as proposed storage tanks and pump stations. The improvements for each design phase are shown in the Distribution Improvements Map located in Appendix A. Appendix G contains a more detailed opinion of probable cost itemization for the improvements that are summarized in Tables 8.1 through 8.3. The table below summarizes the total costs for each design horizon. Opinion of Probable Cost Summarization Fayetteville Master Plan Study _ 8-1 'Construction Phase Year 1 17-20221 $ Cost 7,792,000 Engineering Contingencies $ & 1,948,000 1 Design 3; Phase T . ota I 9,740,000 11 2022 - 2027 $ 750,000 $ 187,500 1 $ 937.500 111 2027 - 2037 $ 29,084,000 $ 7,271,000 1 $ 36,355,000 Total $ 37,626,000$ 9,406,500 $ 47,032,500 Fayetteville Master Plan Study _ 8-1 Line/Item Approximate Pipe Approximate Construction Engineering Total No. Length Diameter Cost per LF ' Cost & Contingencies Project Cost " $ LF (in) 3,030 1 8 $ 41.72 (Rounded) (25% $ C.c+Ir nrn.ramontc EF -1 3,800 18 $ 143.95 $ 550,000.00 $ 137,500.00 $ 687,500.00 EF -2 4,600 18 $ 142.88 $ 660,000.00 $ 165.000.00 $ 825,000.00 EF -3 3,030 1 8 $ 41.72 $ 130,000.00 $ 32,500.00 $ 162,500.00 Tank -1 0.75 -MG Elevated Tank $ 2,000,000.00 $ 500,000.00 $ 2,500,000.00 PS -1 East Fayetteville Pum2 Station $ 450,000.00 $ 112.500.00 $ 562,500.00 AV -1 Altitude Valve & Vault E. Paul Pray Dr. $ 70.000.00 1 $ 17,500.00 $ 87,500.00 Subtotal East Fayetteville Improvements $ 3,ISbU,000.uU Z� abS,000.UU 41 4'Vz:),uuu.uv Tnr.rnrrhlr. Imnrnsrnmanfc T-1 400 1 8 Is 57.50 $ 23,000.00 $ 5,750.00 $ 28,750.00 T-2 570 1 8 Is 57.37 $ 33,000.00 $ 8,250.00 $ 41,250.00 Tank -2 0.25 -MG Elevated Tank $ 1,210,000.00 $ 302,500.00 $ 1,512,500.00 PS -2 Township Pump Station $ 250,000.00 $ 62,500.00 $ 312,500.00 Subtotal Township Improvements Z� 1,97b,000.UU 3ia,uuu.uu :� I,essa,UUU.uu Benson Mountain Im rovements 550,000.00 $ 137,500.00 $ B 1 2,200 4 Is 12.59 $ 28,000.00 $ 7,000.00 $ 35,000.00 PS 3 Benson Mountain Pum2 Station $ 215,000.00 $ 53,750.00 $ 268,750.00 Subtotal Benson Mountain improvements $ 243,000.00 $ 60,750.00 $ 303,750.00 Major Water Line Improvements 16" Pies and Greater 8,000.00 $ 2,000.00 $ I-1 1 5,300 1 18 $ 158.1.1_ $ 840,000.00 1 $ 210,000-00J $ 1,050,000.00 Subtotal Major Waterline Improvements $ 840,000.00 $ 210,000.00 $ 1,050,000.00 11Ainnr Wator 1 ino 1mnrnvamontc r19" Plnvc and I Pggs 33,750.00 1-6 460 8 I -2a 6,260 12 $ 87.88 1 $ 550,000.00 $ 137,500.00 $ 687,500.00 1-3 200 12 $ 95.00 $ 19,000.00 $ 4,750.00 $ 23,750.00 1-4 50 8 $ 164.00 $ 8,000.00 $ 2,000.00 $ 10,000.00 1-5 420 8 $ 63.33 $ 27,000.00 $ 6,750.00 $ 33,750.00 1-6 460 8 $ 72.17 $ 33,000.00 $ 8,250.00 $ 41,250.00 1-7 25 12 $ 416.00 1 $ 11,000.001 $ 2,750.00 1 $ 13,750.00 Subtotal Minor Waterline Improvements $ b4U'Uuu.UU $ lbz,uuu.uu $ ulu,uuu.uu nth., Irnnrnuaman+c PS -4 Kessler Mountain Pump Station $ 520,000.00 $ 130,000.00 $ 650,000.00 PS 5 Booster Pum Stations (3 total) $ 150,000.00 $ 37,500.00 $ 187,500.00 PRV-1 Pressure Reducing Valve Van Hoose Dr. $ 15,000.00 $ 3,750.00 $ 18,750,00 Subtotal Other Improvements $ 685,000.UU $ 171,;?5U.UU $ U!)b,ZbU.UU Total $ 7,792,000.00 $ 1,948,000.00 $ 9,740,000.QO Detailed Cost Itemizations for Waterlines & E. Fayetteville Improvements are shown in Appendix G � Above costs do not include easement acquisition costs, legal fees, debt service, or other ancillary costs. All costs shown reflect present value (2017 costs) and have not been adjusted for future inflation. All costs are opinions for budget purposes based on best available information, and actual costs may vary depending upon actual bids received. Approximate Pipe Approximate Construction Engineering Total Line No. Length Diameter Cost per LF * Cost & Contingencies Project Cost ** (LF) (in) (Rounded) (25% Major Water Line Improvements (16" Pipes and Greater) 11-1 1 4.900 1 18 1 $ 153.06 $ 750,000.00 $ 187.500.00 $ 937,500.00 Subtotal Major Waterline Improvements $ 750,000.40 $ 187,500.00 $ 937,500.00 Minor Water Line Im rovements 12" Pipes and Less) Subtotal Minor Waterline Improvements S - $ $ - Other Improvements Subtotal Other Improvements $ S - Total $ 750,000.00 $ 187,500.00 $ 937,500.00 Detailed Cost Itemizations for Waterline Improvements are shown in Appendix G *" Above costs do not include easement acquisition costs, legal fees, debt service, or other ancillary costs. All costs shown reflect present value (2017 costs) and have not been adjusted for future inflation. All costs are opinions for budget purposes based on best available information, and actual costs may vary depending upon actual bids received. Major Water Line Improvements (16" Pipes and Greater) 111-1 1 57.850 48 $ 491.69 1 S 28,444,000.00 $' 7,111,000.00 $ 35.555,000.00 111-2 J 4,500 181$ 141.221 $ 640,000.00 11, 160,000.00 1 $ 800,000.00 Subtotal Major Waterline Improvements $ 29,084,000.00 $ 7,271,000.00 $ 36,355,000.00 Minor Water Line Imarovements i12" Pines and Subtotal Minor Waterline Improvements Other Im rovements Subtotal Other Improvements $ - $ $ Total $ 29,084,000.00 $ 7,271,000.00 $ 36,355,000.00 Detailed Cost Itemizations for Waterline Improvements are shown in Appendix G Above costs do not include easement acquisition costs, legal fees, debt service, or other ancillary costs. All costs shown reflect present value (2017 costs) and have not been adjusted for future inflation. All costs are opinions for budget purposes based on best available information, and actual costs may vary depending upon actual bids received. Approximate Pipe Approximate Construction Engineering Total Line No. Length I Diameter Cost per LF * Cost & Contingencies Project Cost'" (LF) (in) (Rounded) (25% Major Water Line Improvements (16" Pipes and Greater) 111-1 1 57.850 48 $ 491.69 1 S 28,444,000.00 $' 7,111,000.00 $ 35.555,000.00 111-2 J 4,500 181$ 141.221 $ 640,000.00 11, 160,000.00 1 $ 800,000.00 Subtotal Major Waterline Improvements $ 29,084,000.00 $ 7,271,000.00 $ 36,355,000.00 Minor Water Line Imarovements i12" Pines and Subtotal Minor Waterline Improvements Other Im rovements Subtotal Other Improvements $ - $ $ Total $ 29,084,000.00 $ 7,271,000.00 $ 36,355,000.00 Detailed Cost Itemizations for Waterline Improvements are shown in Appendix G Above costs do not include easement acquisition costs, legal fees, debt service, or other ancillary costs. All costs shown reflect present value (2017 costs) and have not been adjusted for future inflation. All costs are opinions for budget purposes based on best available information, and actual costs may vary depending upon actual bids received. i w w cQc w� oo¢ zza,< w ���a�wowz L I ZNNwwoLL z°3F0000° p > .. ._ uawa tnmw owex, an a" cc �d A Jj . I _figelk i,, AS .jR d �I Tll .. � y f •'i '� � �.5 `L '�� n --.. ypyr: +��. 1'� jj' -r` �—z � J. e toH � f, a_ _ a •� �"'-'s' Lt �a, .Y i f» ,J•.t I z ° i; ! a_ ii j ".:� • j E;; ! 'fes ^,r-;:."�„�,;. � .+— J r_ ` ��� ` S` r t 0-�i rD' iT- 11 s F- U N N 0— W CC W wa a� U)cc :3w CC > W w ~Q m 0 wm J L JL > 0 W w Z wa m LL 0 a } ao �w LL > OQ g o F �o } O Z W 01 ado � ¢ O LLJ LL a LLI a F— =Z O ch J � O O LL r, H (S) (A �t v co (D M�t rn* M M r O O r r N V [7 O7 N +- (•1 N O M O N ((') � O n aD n a r r N N N M M N N r r M 0 a W 0 0 0 0 0 0 0 0 0 0 0 (DQ = MoN0r-MM o MIt M (D In N M Iq Lq N O (D cl (D to Ln (D m (D h n n (0 w n ; a� O 00 O a0 (D O O 11'1 Q1 M N � (o(Dno�MM MONM � C7 e0 (D O o 00 n OD CD V [•1 M m It d'to M u701t/ 47 M 00 Lf) 0 0000000000000 rM 00 N't00 nr-On(C7N � I� (o(o M(D C; O P: L6 M C6 L6 r � a W W 2 F- n n n n n n n n n n n n Q1 (7I T Q1 (7) (71 (71 (71 T 01 Ql O LL W >- -j Q w¢ Q a U 0 w a oaC amLL LUOz0Oul > F -a o N o N (n (n Ca . N N to T- N Lq r r r r r r r r r r r r T T n (71M (D M In d (71 N N O r M N r M It CO .- N N N N O a W 0 0 0 0 0 0 0 0 0 0 0 0 Q M n (D I` O M CO N (A O CO N to Ln V LQ (71 07 W( J (n a0 u (Dn(O ConM W nMI--N ww /a5 >a� "It 'It MMM(n Id- CD MM W Mo -qt u»ao nn co a)m N M to M in V r (D N Oc tb CD a LO (C1 ua LO to CD CD CD to (D LO (A Lc) 0 0 0 0 0 0 0 0 0 0 0 0 0 I� O 7 N M (D T 05 0) (D 00 O r M(D0On(71Cn n0(Dn(D ti 111 6 (17 (D o0 m CD M (P1 O (D m r w �� N N N� r r r" r-' N a w W 2 (D CO [D (D O (o (D (D (o (o (D CD j- nnf�nnnnnnnl+n (71 (7) O O O Q1 (71 O T Q1 O m r r r r r O LL W o (7 Q mir ¢ w�cnMWm00 W Dz¢�Qz��Wo���O <(wi�¢wOZLH W 0> a > W LL LLa} 0 0cc 0 0 0 n N (Ln � M M N r M N Lo r O N O m m It r� N- n NJ�- O} LL r r r r r r r r r r r r �.., T r r r r r r r r r— r r T T aoa � p } �a p Lu w> 0a 00 �a p m (C)n mM (O CDMM OMn r N N M M N N r rrrrrrrrrrrr 0 a o� W Q �C C) O m ( N O COD m N O COD a G CO M r M V" T 00 (T r In m CC n n n n m m m m n n j CQ Q L N w V CD 'It m M V CD M V T (n'It C,n'It rn000'It (n 00 N O M CD CD d' N d m (n Cn ll m (D (D CD (D n n n CD CD (D (D O C�000C�O000000 M n m n 6 6 M r N m O m O I", N C'7 r CA 'It N M r (3 M r lCl (P T m m O N M N N O N O ~ T N N N N N r N CC N Q w } W 2 Cn Cn Cn Cn A O CCF) 0)M T D) 01 rrrrrC.rrrrr 0 LL TrnMCnn�oMM TM M N N MCA N N N 0 a W C7 O (D 00 O V 00 0000 COO m n m N O CO 00 00 m m n m CD O N O O m m W C Q Q G n r CD n n U) O Cn N Cn O m N Lo CD CD LC) Cn 00 I, m 0 M C!7 n CY N M- O m N Co n CD CD m co w 0() w n r (D r - co CO O o ,0 o M o 0 M 0 00 M O co (n O 00 O -,t (f) n (f) Lo Lo 00 a) �t co O "t N CO ;t CT Cf) 't cri N m m r- W n (D W O r M N N- N N N N N N N Ncc� N Q W } W m m m m m m m m m m m m 2 n n n n n n n n n n n n Cn(nrnrnrn(nrnrnrnrnrnrn CCr r r r r r r r r r r 0 LL w >- � Q Z:) Ir ��woWw� (uo co LL, co co co W7 ZQ W �Q�_'-'QaUQw Q W LU 0 n z0 F- W 0 a LU >- w ajc�rzJD mmmoiw Z m Q Q❑ H> J Q U a 0 TrnMCnn�oMM TM M N N MCA N N N 0 a W C7 O (D 00 O V 00 0000 COO m n m N O CO 00 00 m m n m CD O N O O m m W C Q Q G n r CD n n U) O Cn N Cn O m N Lo CD CD LC) Cn 00 I, m 0 M C!7 n CY N M- O m N Co n CD CD m co w 0() w n r (D r - co CO O o ,0 o M o 0 M 0 00 M O co (n O 00 O -,t (f) n (f) Lo Lo 00 a) �t co O "t N CO ;t CT Cf) 't cri N m m r- W n (D W O r M N N- N N N N N N N Ncc� N Q W } W m m m m m m m m m m m m 2 n n n n n n n n n n n n Cn(nrnrnrn(nrnrnrnrnrnrn CCr r r r r r r r r r r 0 LL w >- � Q Z:) Ir ��woWw� (uo co LL, co co co W7 ZQ W �Q�_'-'QaUQw Q W LU 0 n z0 F- W 0 a >a La} LL O0o O}LL a 0 Q Q Q } �a } � ~ m w ZO m Q2o cc 2 O LU LL o a C7=.. Q ~ m N O O Q � O O o V I- CA O (O 00 co W m N h 0) N N N C7 N M N C) C) g r r N Cl r r r r r r r r r r r r T T- N-It N N V M CO N CV7 N N N N 0 Q cc LU O- l_O O � (o O) O (D N (D c c ) ED N 00 W) O V C C, m of CA C, o 0 0 c6 C ; Q Q � O rl-rlN LI) LO fD m CO h [7 V r w V [O co O M V r- oo N (D LD V O LP) ao V V V OD LO r�P. N<car-P-�r-ao0oP- ca ti O 0 0 0 o 0 0 o O O O 0 0 r � 00 NO O N 7 0 M- Ico N �- 0 m V M V N V m N N m C) rD r N N N N N N N N N N N N n N Q W } W CY) cr)rmn0)a)0)mrn0 H mrnmmmo,rno)a)rnmrn � rrrrrrrrrrrr O LL W ac (3 Q LU ul CO LLJ co co LU ¢ m az w 0 ww �rwi'�¢� �'¢ W Oow H W 0a co V u) N co CD uo CO O co N r -t LO r O r O N V OR C) N r r N O r r r r r r r r r r r r T T cm Cn W 0 u7 00 (D tD d C7 C7 N N Cl) N N N 0 Q W O O O O O O O O O O O O Q co 0 O M CD mN V O M 00 CO N N md.6,3 mmrn W Q T Q ^2 N V ti V 00 m o�- V 0 h V O O N � 000 IN M T C) 7 co� T Cl) ti � r-- r- r- 0 F r cr C6 r- r- O O 0 0 0 0 0 0 0 0 0 0 0 o M O MM r C0j_N O(VO_con r Cf) 00 00 CA O N V7 C7 W to V O C6 r Ol N M c7 V N V 00 CO N M V T N N N N N N co Cl) N CV N N 0 c`) Q W } W 2 0 0 0 o O o 0 0 0 0 0 o f- mmm0mmaoaDOoeoao rn rn rn rn rn rn rn rn rn rn rn rn � r r r r r r r r r r 0 LL W } m¢ -I w}(nmwco03 W E(r,) DWc:� a it a D co W W Q W a Q d U W Q LL w 0Z Q M r M O N n w m O tD O w Q 0 r N N N N M 1!]C\! N r N 119 w N C\JO n Cl) N n o") M N N r r r r r r r r r r r r 0 Q Lr W O O O O O O O 0� O O O Q 000 n co M 1n a)) T (O ^ r 0. N 00 00 w T T T T r T T T> Q � Q n M N N M w V T T N w 4') -tr T N w T N N T T n O M LQ M O M T T N 0 CD LC) cc mo ri n ao n � oo t� co ro n 1� � W >- m m Q cr S J 0] W 7)(r<a¢��0w0ww c) W a a W UQ O W Q u- F- W F- a N M n lf) V N w L!) M n n RT T N M r r N M M r N N R� 0 r M u2 M T w O w f0 In M N M N r N r N N r N N V r r r r r r r r r r r O Q W CD M V N w to m m O O rL n T co r .-m N N n T M cc T O T m m m T- O O O T O L1J X r r a N V T n 0 T cD w M r T Ono -,I -1N rnCl!L MLQ-r 'T_0 0 !) n w N n n r M w T w r-7 n r O 0 0 0 0 0 0 0 0 0 0 0 0 r- ovcOV Mo+-wnwMMa N V O T m w w w o M N 0 *- CO 06v06( cOcvIli vv0N T V N M M N N n w n cD N N r r N Q W } W 2 N N N N N N N N N N N N F - w w W w Op 00 w 00 00 w w w T T T T T T T T T T T T LL W } }Cc CLC7 Q W�no w W W Q HLu n � Q} z J co D w O�� = 0 WW < COW R Q ' Q d U W Q W O LL 20 H W OQ lay LL o O N n O CD Ln M O O M (D v N o N CV CD O O r 0LO - N N d CO O~ o CV R 0> 1 r r r r r r r r r r r r r - -- r r r r - ao� � c �a 0 mw LL MN Q Q N N NN N NNNN r r N 00 ------------ F- rrrrrrrrrrr O [C G Q cc M _ w ea 0 � Q O in N (ND W (M7_ [M7°D Lo (OD (Mo c Om (D to 00 co cr_ r D7 00 D) W a r2 v Q �R T Oo7 r) N N N �? N r N N a cc w 2 tOn(Onuoi4� cO.iouOirn0OoOoa m r o o n^ r 7 tD O 4 W tT !�? OJ QiOr T r r ro O W Q Q r2 } W Z0) CO (D O M M O N V N LO 't w w W� M m M o In r- 0 0 p M o O w 0 to 4 4 O CD O O n LO W O n1��ti Q p d (D O r 00 M -q-r O In r� 0) (D O � oc O (T V to to N tD Cj) tr c I� r� l� P- (D r- cW w oo P. r- ti Oo cD r- r� r- oD aS o tri oD cD r� Cp LU LU LL v Q W = aria 0 U)o D1 co(o co '* MO Lo eeO��l�Cp v r) p 7 CA N N O O r N of N LA OD J r2 0 O N 00 4i M N N It OD (o O 0 Q C1C O M r Y r r N (o N n a N V� T' O O v N N N N N N N Co N N N N CO LE N Q ~ W } W 2 000 OMD 000 00 000 00 OMD 00 00 co OM0 OMD rnrntntnrnrnrnrnrnmrnrn � r,-rrrrrrrrrr � LL W } (7 Q <a<(L Z) UJ LLJ LL � O Z ~O LU 4 0 0 0 0 0 0 0 0 0 0 0 0 o rD N N V (D r� oo Lo cD N n O W co) d' O N O) C? tD M In N rl.� N IL00 r` N tD (D to r- $ ch LO (D 00 OD r- CA CD co co M V w M N 00 (D � Cl) Ct N N N N N N N M N N N N r M a W W 2 ODdODOD0000 wODmcod w f" OD waD OD ao co ao ao moo co aD � Cl) T nrnrnrntnrnrn r LL W (33 aOC<aQ»c(.7w�wLu a W m Q Q a U> w Q 'LL w0Z01- W 0 >Q CC >a La} LL 000 0 i' LL cc �a 0 2w LL > Oa 00 °C o m Q o CD 2 m N rn m m m o D m rn N M r 0 0 N (D V r r o N fD N 0 N LO r - N N m N N m w g O O O O O CD N M (00 O m O O a 000 r N Lo In I� N N m O Ncc oiaiD d—C\ r!�)o)mw xQ Q '2 (3)m (o 00 ") 7 (D r In N u7 N (D T n m m N N N m m N 0 M M m N ti N -4M CD N O n 00 00 f� a0 00 00 r 01 W OD 0 a0 C6 0 0 0 0 0 0 o 0 0 o o o o W W O N cl CN')_ n r N m cq ( r FZ r 00 O) N (f) I- N N06 N m m (D 00 (!i m d d (f) (D -ItO) r� n V V 0 T N N N N N NCO N N N N N r v Q W } W S (n U') Lr)47 In In (A 00 o 00 In In OD F- auOD mmco maumoaDoao S rnmrno)o)rnmrnrnrnrnrn LL (D Q) 00 't N 't (D co 0 m (D f0 -T r o r r o7 (D r N d r N tD V (D M Id -W N M r O� N N N N N m Cl) r N (f) N O a w 0 0 0 0 0 0 0 0 0 0 0 0 (D It 0) Cl) (D 0o -,* co 00 O a C Cl! " O" (O l!) to V N (D m c !2cr r�TorTo{yJ Q r r 'ate 1l- O OIt 'It'ItO u7 O) (f) r o rn mcDa000m�(ncot� a0 m N r Cl) M CV Ci Cl cm 't N co 00 06 06 m m D) r W W or; O aO C 0 0 0 0 0 0 0 0 0 0 0 0 lf) M O CO M N 0 N r� O L co 01 r (!)N N LO Q7 P,v(7) Co0Lo� T N N N N N N Cl) N N N N N N a. M Q W } W S cD cD o 0 o cD cD co m co cD co � 00 a0 a0 a0 W OD M W W 00 00 0 a�a)rnmrnrnrnrnrnmmrn S rrrrrrrrrrrr 0 LL W >- CE 01 -In cr zir<(L U) Lli D �w0Lo m LU wI g CO a Q d U W Q S �LL 00z❑F- W ALL 0a LL Q (D Q) 00 't N 't (D co 0 m (D f0 -T r o r r o7 (D r N d r N tD V (D M Id -W N M r O� N N N N N m Cl) r N (f) N O a w 0 0 0 0 0 0 0 0 0 0 0 0 (D It 0) Cl) (D 0o -,* co 00 O a C Cl! " O" (O l!) to V N (D m c !2cr r�TorTo{yJ Q r r 'ate 1l- O OIt 'It'ItO u7 O) (f) r o rn mcDa000m�(ncot� a0 m N r Cl) M CV Ci Cl cm 't N co 00 06 06 m m D) r W W or; O aO C 0 0 0 0 0 0 0 0 0 0 0 0 lf) M O CO M N 0 N r� O L co 01 r (!)N N LO Q7 P,v(7) Co0Lo� T N N N N N N Cl) N N N N N N a. M Q W } W S cD cD o 0 o cD cD co m co cD co � 00 a0 a0 a0 W OD M W W 00 00 0 a�a)rnmrnrnrnrnrnmmrn S rrrrrrrrrrrr 0 LL W } �Mjr r<z-j❑w022M((j Zm aQMD-)❑�~>U J Q ALL aWOzaFQ- W LL Q O W LL a ,. °�o 0}LL aca cc p } �a 0 5w LL 0Q 00 � Q cZ LU ZO a Q2Co m c O � 0 a w= a~ m N O O1 J O Q O Q 0 T 0 r fD "t NM m r N O N tt2 LC) � N r 0 c+J r M M (D M N r r N R rrrrrrr,-rrrrr r O�tT� O 00 N V M r 0 LO N N Cl) N N N M N N N N Q Q cc LLI LOC) N O O O LOCI -� O N W W Q N n(D N In 00 r O O M r 10 O O �j r r0 r0 r r T 0 w X mnItalloItn(Dr�O�w n LO c0 Lr) Co V) K Cm�!rnC\!r-MOLO N n606mo6o6�2mroimmlm 0 _0 0 0 0 0 0 0 0 0 0 0 0 cD V M M W m N n r M N LQ N O c0 "L T 00 lq�' N m't moo m N m r- n n M m O LA 1"' 0) [O In (o O O � m m n" cc) TN N N N N N M M M NN N N Cl) C7 Q LU } w 2 www00n00r`r`co00r`0 H OO OD CO 00 co 00 co co 00 00 00 00 m m m m m m m m m m m m rrrrrrr,-rr 0 LL w } z-iLLJ 20¢D2�Q�w00 WW Wa�-' ' w QaU0Q CC LL U O z o H w 0a m0OMLr) LnCl) m(Om� N C9 0 0 0 0 00 Lq N : o N O N In ter. -err. rrr�r � T.- (2n (O7 (O m O 00 � N O M V r r r r r M N r N M r M N 0 Q w N w m O m m O^ n (O d' n m Q M S N LC1 ' N O W M r- O M O O O O M LCI N -�i d O N O w XX ram r� 000Or-(D M LO m M ONN m M LC) M M m C\! r cV m CO M V M m mmmwOrr0NrmLDm 0 o o o o o o o o o O o O Tr N r` O w O't m r m 0 m 00 Oh 00 m,dr Lrl ;` m 00 �t m M M CO m M 4 w o w O r- (D M m Lo mr 01 m r - r - w NorZ Mm w O qt T N N N N Cl) M M M co N N Ntc� M Q w } w 2 W W 00 M CO 00 0O a0 W 00 M 00 co 00 00 OD co 00 co w OD 00 co co m m m m m m m m m m m m rrr�rrrr�rrr O LL w Q 0 co LU ZEr<(L =7W0LuLu CO a a a v O w Q (X LL O z O H w 0Q x cc a > W �a} m m W to CO r` m no � coO N o to O 00 coCp N v O N't w -T O�0 O 97g7 7 rqc* qN—:r N M 0000r,-vLQg7 r N Lq O} LL — ---— -.--— -——— r r -- - ———————— r r aoQ � c } �a 0 2, Oa mCh� NN OMNcod IT Q 0 r r r r r r r r r r r O pC a Q 0 W a 0 n O (C rC\ Cl to V m T N cc O p O O r r r r r r W XXC 2 r Q G rm TT m�torOTN) O N N N N (7 C' O Q W 0 o O o 0 0 0 0 0 0 0 0 N N V N O V to m n to It m Q O d' � (0 m LO to (a M M r- d 6 - 00r NV TTr .-W XQ a C } o� 0 O O t°DO amD tmO a0 0 (O V r (o V ((o o O N U) N V tmo t0 OD (0.j 0) N m~ N a O O tf) N N tO n - r` UO dp In r� tO m (O m CCC a)mmmmciaiToodai O a)ma)a)mc mao O w O ¢LL w = aZ o O o 0 o O o o o o o o 00 M O O LO to N O O"t -t m CO N O d% 7 p C1D Cn O V '4 lO - 0! � C C 0� J O O m r` 7to tf) N (0 m fM N� O 01 Q¢ w w w w m m 0* r N m 0 n T �. O v N N N N N NCO CO (! CI N co u1 O FLL M Q W w x m m m m m m m m m m m m �.. cococo0000cococo )o00coCC) x rnTma)mmmmmmmmm 0 LL CE Er w� -j Co LIJ ¢AUG=}Z���mLij �� W Qw�¢���aLLoOwQ� LL m z o F- W OQ O O O O O O O 0 0 0 0 0 o N r` -t W M O m m n w m N m -e O O to (q M C"J a0 m 0 I, O n r O) orl-"t m0 LO Namt°ri000 O) coNNNNNc7ClcicoNNti � C,Q W W x 00000Op00000 � m m m m m m m m m m m m mrnmmmrna)mmmmrn oC 0 LL wQcrQC) LU W ¢CO:E< �QaU>wQ �LL w 0zoF- W 0a > W a} 000 0}LL aca ¢ o �a 0 2w LL > Da 00 �o o~ LU zO) Q2o cc cc o > LL a M o o n 0 N w m n n W o N Of O O O O N (D Ll) N r O o N LO T 0 M V V 7 0) S W M N M N N M 0 a w g O o 0 0 0 0 0 0 0 0 0 0 (WD M M r U'j M (WD LQ� N r n c O O O r COT T (D T N r O w Q r r a r- Cl) W a) N V 0) OD LI)r O (WD r .N LO N (D W r 0) 00 O co r W W n M d6C rnDiTr�r�m W O r T O 0 0 0 0 0 0 0 0 0 0 0 0 I- nM 0- It M OD It M W W M 0 T I Ln L'J W � dL 00 W (0 C7 - C) T 0) ono Lf) (OD r- O LN Cl) d) Co m W P, 0 T N N N N M M co M M N Nr-, M Q w } LU T 0) T 0) 0) O) O) m W 01 0) O) ~ D1 W r0) T O O Q) 07 01 D7 0) O r r LL n WMNQ)V(DnlnotWCD I- O O r N r r N N N N r r T N r r r r r r r r r r r r T T W A N N 0) n m W n M W LA rrr,--rrrrrrrr 0 a cc W2 0 0 0 0 0 0 0 0 0 0 0 0 0 M N Olzr (D O h m Ill n d Q W rn Ll) M O Ln n oo n LL7 0) O O r rC� T r N N T r r UJJ X r r Q 2 .qt Lo N O m M m^ m n �iimo`ro„0wr WoonWv r W W m W O 0 0 0 0 0 W 0 C T O o 0 0 o o o o o o o o 0 w W W n O n N 0) W Ln N(0 W O N O CO M N O) n O W CO to fD W (7) M r- W Lli N (D N n (D M a CV 0 n W mm M M N M 0) N T T N N N N M N (`') M co co N M M � w } w 2 N N N N N N N (M N N N N F- 0) 0) 0) 0) 0) 0 0) d1 m 0) 0) 0) rnmD)0a)rn rnrnrnmrnrn LL w Q� �LLC7 �?Qa�»(DW0ww Q aw�a ��aaC)OwQa �LL U0zipUJ a Lu } LL (r m Lj Q aa�J}w>u)cOwmm N w ZmQ<f)F-O; } ax,1 ❑z w Z mrn O Q O � m � ujLL O a U1 O N d I-- N n m M U7 m M (D O) r N r O r (D (D M N r r (y (p N d U) O m N m U) M M 0 N N M N N .- It N N N N N Q cc W O O O 0 0 0 0 0 0 0 W r Q CC N m m M r m m M m r N (D O rrC\TC\i r�rrN W X Q r rr a� NO m m m N I --CD LO d U7 (D W N m 0 m N U) r O 0 w w* r d m N h N UD �? m m m m�! r r ;: !� �? m O r to O OO 0 0 0(D 0 0 m m U) -1 O N r- N N r m V O m r- CO (D M M (O m 0 C� m n Ui Q) r O m m d M h r r M n M m m m O m M M M O O n r M N N N N M M V M co co co 00 M a W } W 2 M co Cl) Cl) Cl) M M M Co M M co m m m m m m m m m m m m m m m m m m m m m m m m([ r r r r r r r r r r r 0 LL W >- c[ cc cc 0 a DMmaQj?�wOW��O a CO ¢ Q a U 0 w Q LL W Z 00 w H Q N co U-) N r d r U) U] � m N r 0 0 0 r UJ M V M U) O r N <O O d O d m U7 OD m V d N r N r r d C] N r V r N r r r r r r r r r r r r O Q w U) W mOO r- M On C U) W T dm d W U7 W N d M a G mm 00r�mmr�CD (Dmm rCV r N m U) (D T m N N UJ X ar .- r r r a� M (D Wr m W (D M N M CO) r o U) M r m m V M M d� to m d r d m 0 0 OD CO. N O V Ln o 0 0 0 o C'C\C'T C\-7 o r r r r m m T U) m N N m m m M In M M C'7 CD r n NM N f, O Q1 M m d M M m r N m t` M N N co N M M M M M d M M M M �a W W 2 d d d d d d d d d d d d m m m m m m m m m m m m m m m m m m m m m m m m 2 rrrrrrrrrrrr 0 LL w >' m C3 Q m< j W}0mW mm co W zCc<a. »C.7WOww�C'3 aW�a���QaUoWQcc LL Z O H W F- Q } O F W 0 tT Q � O > LL Q r 7 W 0 M O M r d N CO O r O r O N M f Lq N O r N Il� N Lo N N N N o N T N Ap a x W � 0 :�f M0o-M(Dv M cq LDr d D) N Ln n W CM r CC Nrrr- � �OT{�uwXX N r Q T2 MOOO WNd CM r -W C) LO O N N f� LD w N r- fD d N O r Ql r r M 0 0 0 ai11-L crt Rt roTrNMco�Nr �j r r r r r r T T N nO M h d 1� rn h d <D M M a0 In O In N 0 O d CD � 0 C1 U% cD n Ln c0 N M t` cD N m d-t� Ol M N O W CO 0 O M M N N O d MMd(`OM NO LOWT M M Cl) M M M d Ln d d M Cl) �% �a w } w x Ln M Ln LD M Ln M Ln Ln LD Ln Ln F- M Q1 O1 D7 LA W m O O LT LA Q7 x rrrrrrrrrrrr o LL W } ¢ C7 a =)X<a.2=m 7wowwnC'f ¢°wQ���QaU0wQ CC u wOzoF- LU LU F^ Q M r LD O N N M M M W r 0 N @M r N N r N M d Ln M N r 0 N 1A r r r r r r r r r r r r T T- N N O ( C) It N w W O w It M N M N N N N N N N N N O Q W'�{ M W W 1,- LO r- r� M W d r Q LnOMN oNap n LO nOQ rlr r` M N LA O r LD r� m M c_ T Lo T Co T to P- cr LD T CO M W X r Q LA O r- M lb M N I� 11] O LD M (- N LD t` d d Or- N It Co. LD M T- CR LD Ln LCl M LO W O N T W N oo mLrNi Ln o oOLn dLdn I-- m m to(D cq M M O M fD M CD D) In m ON CO 0 N N M M C) 'd- LOO O) m M N7 m co 7 V V o o co Cl) 7 N T w } w x 0 C) LO m m CD m C) m m m CD a) � 6� 01 � D1 0 L7, D1 0 D� T W 0 CC T lA Q� T m T O M O O O O rrrrrrrrrrrr O LL wa cc cr jr a ZaQag D LUW�Q �uj ��Qw0pOH W 0 >Q ui 0 = aZ� � O rn ria atro� 0LLi" mor) r cooOro o(nr N r N Orr N M (D U7 U7 C7 N N M Cfl M N N N N M M M� N M 007 O Q x w M M M rn O O m O N M M V Cr +) m� -,t NI Lo r- cc O m m a_ T r V M '7 r O" 0 0 (D U7 V w X N a C 0) L2 lt o � cc4) Dmi m( Ln oc) v)) N cc) N r N C7 m r CP N m r r -- ;z - M r r r r r r r r Or N r r„ rco M M r m m C' m' u7 Cc!( W N r U) M N (D U) r N CA (f)11 It (D m (D d' CD U) M O1 T M M M co co m d' t M 07 M � Q w } w r r r r r r r r r r r r 2 rn rn rn rn rn rn rn rn rn m rn rn rn rn rn o) rn rn rn m rn m rn rn O LL w} LL C'3 Q m in Lu D¢�oCQzJ�wo� E M O LLI ¢w�¢���¢WbOwQa LL Cl) z 00 > H Q Lo I- N"tU7 OOmMM V OO 0) rNMr(q 1p NOO M I� r r r r r r r r r r r r T r M M N M M N M M M N N O Q w� co N N N In rr (D N0 O _0 Q� a)mNNm�NO ON Q C\! 'It ocr m'11 m C\! (Cl M m M U) U) 'It U7 m m c j N (D T M w x r N N N r Q C (D Nm nOONdmU)Mm M O U) r U) r O m m N U) 00 0 M U) r N M m N m r-- O N r r r r r a r r r M r to N M M r C)) M(() r m 0 M fl -r- (D co -t(o 1]-tNLf) m0 CO (n(ornv_NM(1)cm(D�(or M U) m (n U7 m( r op Q) N 00 O7 M M C13 Cl) 007 d In IN 7m C -i co co co Cl) c r R cc Q w } w 2 m m m m m m m m m m m m F. rn rn rn rn rn o) m rn rn rn rn rn rnmmrnrnrnma�rnmmrn � r O LL w a } ¢ ¢ ¢ C7 (n Im LIJ co En co Lu z�°Ca¢>>c�7wOww= C7 w ¢ aWQOwQ OQC LL z 0 LU O Q >LU LL a} 000 0_}LL a�a D. Q } �a m W oa 00 �a 0 O f' W z a) O ago Q m C7 ? 0 � a W L)z co 2 jO0 J O aoca 0 O Z, N I- O Lo M (O W m I- N In m d' CO r 0 0 0 0 N (0 co It N O O N CO r r r r r r r r r r r r T T N N r N D N cMo N 0 LLIa N (O d O N N 0 M Il- O O d O M O M (p -I�t M W Q r- OD lit 0) N (O Ili 0) (O d Er V (7 N M r (ON M m L[) M T W �( N r Q to m N Nrl- m N r-- M (O Lr) Cl) � LO W O to M V W W W to LC) r 0) OJ 00 (O OD N V CO 0) co o r r ()i i m'47 m r o ni r r r r r r r r r r r r T M O S LO -t r Nr� m r m O M M M t r 0 r h M V* M m O O 0) M E M O OD M O LQ OD O f� CV O W W m O M W (4 O O C) lf) r -,tW I- M O N to ItOl T co m m m m Cl)-It(n A co M lD � Q W W 0) W 0) 0) 0) m 0) 0) O O m m 0) W 0) 0) 0) 0) 0) 0) 0) 0) 0 0) a a> 0) m W 0) W 0) O7 O) T 01 01 0 LL W Q goWco WZ)=<m»oW VQ < QCL Ow4CC A LL CO z ❑ H. W 0Q LO o (D r- v v o N (n v M N (3) O O O r N CF OR OR N O O Cl DO O r r r r r r r r r r r T T Mvrnoti-It am�vOD(O rNN Cl? V? mNr 0 a W O I -W O O (DC\j r (D [O M� O OD m N OO '14^ h Iq (O x r .m- �2 r I2 W (O M M L T m W N N r r Q W LO M o m N rn It v m m m (D I- 0 o M W 00 Ln o m M CO �n m ' o (D v ti (D rl-� o O r O r N N -,t m I-- N r [9) r r r r r r r r r r r r T CD m Ir) (O m m m r 00 (D M O h o aO trl I� M CO CO (V O OD M r 1� M O O NN N f- O W o o (O (+iri o cV (r) 00 C13 N O M Cl) I V t` 0 mr N 0) � (D � N Ce) Co M M Co M G N m m m N �a W } W 000000000000 0 0 0 0 0 0 0 0 0 0 0 0 000000000000 cc N N N N N N N N N N N N O LL W } as aa��az�Dwo���� QW�a���<(L00LU LL W O z❑ H W O e �a D =- W LL > Oa 00 � a W ZO LA amo cc c O j0LL .r. a N O O W M (D O N O W 0 ": CA O N N N',� W M r In O Cl LC1 r O r r r r r r r r r r r r m V O N M N CD m O N 0 0 Q W M N M CD n O M M M O(5 D (D (D m m I� Mm M M m O Q Ln (n O et f` CD r (D O O M N w N r CD Lo CD M cr T r O co W Q N r > Q ^2 NO It N M CD M N N N CO N (O M It O V 00 1- N C( i N M t` o O N r r r N r r �R r r r C7 r N r'It M r (D O N IA r, M O N r N't W ch N 000_ I V r O M CA N N M r N C2 (D n M r t% O cora�o)rr, Nmm� c0 Ly M M Cl) M co 't LO co co M r� W } W O O O O O O O O O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 N N N N N N N N N N N N O LL W } �a ir ?aQa »�w�WW� W �Q ��¢w�Ow Q OC LL U) Z o F- W OQ or- �--t or-,NmoNuor N OOOrN[7V t`MN0mN r: r r r r r r r r r r r O r r M MM V LO M V O r T N N N N N M N O Q W O r(O .d-M't't O O r ID LO Q CA W N W Ln O Q W N O M N 0< CD n r (D (p rCM°°(10'M W Q N N '"" r Q r` N M M co O O N O M O r CD M CD CD � M O M O N N fA CO .- r�r � N M [D to +- fn +- T N N N C V CD T CD d r M r r r OD O N Lr)O M M WIt In It -T MwOMr�OMNM pp N V r M O W V Ln O O O r" O w O O a0 t` C) M 0 W m� O CD Co ao rN o 407M m O N M Co M M co�� l(7 C1') V- It m M M Q Lii a W } W N N N N N N N N N N N N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N N N N N N N N N N N N 0 LL. W Q ir ccir- c� 2 J D m W W Q Z m W o (7 <LLI�a���Q a-C)Q LL w O Z in H W 0 Q 2w 1L > Oa 00 H ~ Q Q ori w M Q O 2 Q O LLJ 0 a LU= az m 00 rn J � O 0 DOS LL m N co .- O Lo Md- N O W N lO o m r m rn M r o r N Of r r 0- -,--- -- - r r N r W W N M N r m CO a w2 N r- V' VM O 1* M t+Oj M S M w a r- tP C0 c r LQ 'It N W O r m m �w�vTrnor��nvu�w Q N r T a cDaomroWmWo Wrn� N M 1.- r- O CD r� W (O W W In Of r n Ln LQ LC) I C M(3i LQ W N C7 .- N N m (2 00 V M r Cl) - � � f r r r r � r r` W W LO O to W LO V CO W CO rnvommo w Wcor- CV M r�r�mn a t r�ooc�om O M S W t- l- w r` f-- co o tD w 0 W N Lo r. WO W M N Ln V O N co Cl) M m m LO Lo Nr It M m 07 �a w r w m m M m m m M m M M M H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 cr 0 0 0 0 0 0 0 0 0 0 0 N N N N N N N N N N N N Q LL wa <a(C-2 < wmin ca w ���� <LLJ '�Q(L 0waCC A LL wz o H w 0a MCD r -M r -r` N ON7M N N r o o r N r q� Lq f7 r o N N O fD O) M w� O O) In N V m N N m N N N 0 a w g (O t0 M W N 0 0 M t() T LD 4n C r• a0 a i� fN0 N N wN a W � 'tMTv tOtnTOD w X a� m O m r` r- 14 O O r 00 (D M M r- w O U') (D v W co W N N to M al r` to r m N M M r` W V O r m,-� M cM t2 r` m r r r r r r r T, o O m tDrM r v LO r• m o n �v aorn W WNcotDn � v P- m rn (D tq fm 7 to I� N O N W N W W O It U77 W NOOr r`NNLO LO ^ N Cl) m m m It It It It LO v m M cc w w ,It Nt F- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 cc N N N N N N N N N N N N O LL wjr qa r� ~Wcl-,mmvaiw D Cc 0 ¢ z J 5 W 10 m 7 0 QWgaCL ���Qa00wa� ALL LU0z0 LLI 0a X o: La} LL 0 Ir 0}LL aoa C o } �a O 2, LL > Oa 00 Qr � a 0 r oZ W Q 0) Q � O � � O ? 0 a LU aZ m no J � O a Q G �0� r LL 1- Ln W w m N N w CO Ln d 1- co 00 O� Cn 0) 0) N In (D O Ln N O O N CR 0 0 0 o r r r r r r r r r r N 0 N w N M N N N r m N w g (0 0 O Ln M O m qp n (O N o� C 000 CO 00f O I-oc N p U00 cl W ccr c c mMmvT> m� TaLT,w X N N nJ N a a� M N M r- M (~D M M n CD 0 [O r W CO O M Ln CD 0 r r W�2 r r r r r 00 cO o0 (O rn (O m N r mm 00 O r o (fl [O In M O OO O M h N c In CY1 r M M C m (O Ln N mO I- m O m O 0 ct F� w f- Lei O O N O M N r- Ln 00 N W 0 f- M N mmmm'IT I*mm m Itmm N L a LU w m In M Ln M 1n m m m Ln Ln Ln F 0 0 0 0 0 0 0 o O O o 0 0 0 0 0 0 0 0 0 0 0 0 0 cr N N N N NR NR N N N N O LL Lu } Cc F-WWwa 0 �w�¢���¢w�Owa� LL Z 00 w �a (O O Ln m 0 0 m 0 m W O O T O 0 o O r N m CO I' r r o O N fl Or r r r r r r r r r- r r O) M M M n N Cn M O (0 r N- N N r Cl) r N N N r r r r r r r r r r r r 0 a cc 'wR g M t In N M Ln O o O v M (OD N O r (O IMD 1� I` a �_ It r (D m N N L N r r a w N Q [mO It n� 0 LD M O W m 0 N ,q- 'It M O N M 'It r M M N r - r N r -d r (D O 0� L 'i T r N r T Ln N N O) W N 0 0 0 r N r� 000 It Ln W LO W LO O M M O r 0 00 W 011 N CA N Lf) "I ',I: N M m I". InO Ln m ao � cj Lb LI') N V r M O O L a w w 2 CO CO CO CO cD (O M O (O F 0 0 0 o 0 0 0O 0 O 0 O O O O cc O O o 0 0 0 0 O 0 O o O N N N N N N N N N N N N O LL w >- ir cr 0 a W ¢ a w U0 0 w a OC LL Z H w O a �a 0 m O Q � o C13 Ln m N M Ln m m N O r W Qi O O O r r N M r Cl? r r m T I` r r r r r r r r r r r O T T m1f CDC) r (nM o�m r N N N N r N r r r r r r r r r r r r r Q Q w� r W r W O m 0D (O In h (D N [O M If] 00 N m N (D Q LQ 00 cr! OO O (D to d (O m (n rcc � d t m co T Oo rn a) ri (n M w XCC r N r T Q G M (07 N M N (MD N n m N (07 00 N O m N O In �� N V In 1n T r r r r r r r N r r r T W (n M N n� 00 COLO M CO r W N i` m O� M0 U')aD C7 N N to o O Crr)O 00d t-: r-: C\J C6 6 P. Ln O P, (D O m N M Ln 1 00 y r rn ti N L CCQ w } w s r rr r r\ r r n r r 0 0 0 0 o O o O 0 o 0 o O O 0 0 0 0 0 0 0 0 0 0 0 0 N N N N N N N N N N N N O LL w a Ir' ErC7 a:Q=� w>- (nmmmmcnw Q CO a j iL W O w Q -'tL HOZ 0 FQ �a Nm[Or ltmO Ornr M N T rONr rvcON�Or N (O r r r r r r r r r r r r T T N- N r- r N M- N LOCO N CM 0 Q cr w� N N V r r CO r M r M r LO (Drd(Om-4NM4NorQ m r[t r N m O LQ m c0 _ tt V 00 r r r m O LO Lr) CO w N a M m m 00 m m 0 M M N T fD r r Nm m N M Mr to N T r r' m (O Cl! OO r OD r r O �NNNr[T Lr) Lr) r NrO Cl) T T NMNr m 000—t Or mr to (ntrvODOoMorv0 OD O r M r m r lh 0 0 In N O P.: O (D 4 0 0 N O N(5 '0 N O r19mrOrm mM(M!D N M M Cl) Cl) 'ct -It I'* M M M r` � Q w } LU 00 00 00 00 00 OD 00 00 00 00 00 W 0 0 0 0 0 0 0 0 0 0 O o 0 0 0 o O o O o O 0 0 0 N N N N N N N N N N N N O LL wacc ss0 Lu CC LLI w ¢¢��Qz�Dco LLJ Wp2�MLU (D q LLLJ Q Q CLU Q w a CC 3 LL w 0 Z o W oa orrMLnv,cyrroN � r r r r r r r r r r r r T T WO M ( N N r0 LO W M r N N N r r r r r r r r r r o a w� W cccl(arn�c-»rnrnr"Inm TLf)T MMMM I- -;t mm NLU X r N r r Q MZ"t M M N W H O T - 't O W N LO n M W M r 0 W W O r W O V O Wt 0 (D or rl2(RL2rNro c r r r r r r r r r r ,- ,- T M O� M N (O r r M O O M 0000 M N M n M M N 117 N M O Q1 O lO Cl!N W l() I, W M In V V 117 p M V (O O (D Ln W O W O p M M M CO Cl) Lo t M M M M In 00 LO m N a Q w } w M M M M M M M M M M M M O O O O O O O O O O O O O O O O O O O O O O O O cc N N N NN N N N N N N N O LL w >- ¢¢ Q Z¢Qa�ZDC7 W 0wW J Q w a Q a v O w Q x LL U Z H w 0a r N (0 � Lf) (D (O 00 (D LO O (D (D r o M o r'11� 'It l� It 11 'It 0) N I,- r r O r r r r r r r r O T T N W W- N N N M M n T-: r r r r r r r r r r r O a Iw O W M r r W LO O O N N W v Lo -It co (D O W T M Nn h LQ (gcq(DN oo r',I:Moao� _ "t M N CO Ln M M (v) M T M rw X r r r N a L LON N N M CD CD (O Ln (WD h W N In W M M� W O N r W N N m T o. Lri Ln o v ri f o dry" T N W W W Ln M W L17 M W O T N W N N O(3 O � p 0 � N cD M M W M N N N (I--Nn f` T h V W t W N Lo O r (O M O O cO N M S W L17 I� N V r M O N � Q w } w x 00 0 0 0 0 0 0 0 0 0 0 C. 0 0 0 00 0 0 0 0 0 0 cc N N N N N N N N N N N N O LL Lu >- 0 0 Ir rAQ 0wC)ww = (5 <m�a���awp0wQx Z Q Q r z ro W O O) Q2O mQ O LU 0 v Q W = a Z Z �0o J O Q � O 0 0 f ooM Nd r� h M d M W w h rnpod,"�C uLq cq N O �r 0--- - N - C)r r cV N N N 7 m N r LO a LU g cc d o O N N In CO 00 O O a f0 n O CO V7 O p f- d U) r r C'r] Q) N [O N lT N tD w x N > Q a� U7 O) N 1- O CD M M to U7 O U') I- r- f- I-- O M to LD (o d fD O w U'j 00 In r� r d d d 0 I- r It V) O O- r CD O O cO C� CT 0 C r cod OI!)0 coma TdrMaML�r Ndd r N !- r d CA! MO [`! d I� O O r d d tD N N C) r 0) M N N coCJ N CJ Cl) to d CO W CO N N a N CO M M CO COC7 It tD CO d CO CO C7 O1 � � a w } w r r - r r - r r r r r r � 0 0 0 0 0 0 0 0 0 0 0 0 �' N N N N N N N N N N N N O LL ww x Lu Lu a ZjQa2j5»WOww�Q a w¢¢ CL V O w a � LL cn z ❑ F- W 0a W O M r d m m d N I- f0 CO N M 00 00 r r d I, t� CO CV O O) 00 N r - C; o r n, r r r r r o o r r N r r M CR C) �2 N r r0 �2 r 0 a LU 0rndd00t- nN'twm 7 O O m m d r fD O O d O d Q f� f� O cc r O OC (0 U7 O) d c _ r r tr N N N N r r N w X O o O) W n m T O O cO W N CO) f00 op A N O lC) cOD cc O O O ttoo O O T N cD 00 N tO N C'N O r tDNdNdtno00ddrNM octO cO tO c7 cD 0) N o CO tD In M OD N Q) m tD 00 � O O� O N CD r W 0 17 00 c0 LO 0) d- N D) O C Q O N � m (D 0) to to 00 U) O ON O N C) N d N d Ul (D to d d M 07 M 1[7 a LU } w N N N N N N N N N N N N F- 0 0 0 0 0 0 0 0 0 0 0 0 N N N N N N N N N N N N 0 LL w Q Q¢v�>.UJ)-(nmmmm(A W Zcr<(L »C7W 0W W J a 00 a- ��aa-C) �LL �Oz❑ F- W 0 a } LU z OI a 2 o CY m O LLI 0 v a w= aZm O 07 J � O Q c o 0 0 (nnwON(OnwOmNN -T OD m m o O O O O r r r r r r r r r r T T ch n (f]O m m n 0 0 m n r N r N C7 N M Cal N N r 0 a w g N00 (O00 O r (OO a0 N" (p r r litn C) 5 (O (D n N Q n N C'7 n O O N M C'7 r O m NT It co le O tt C7 (O t (2 w a N N N N r r CC r a G M (O (D w N N m N 0 OD (O M T N (O O M m (O O N n v ch (7 W m n O m n O m M m r�rrrrwTODC\i M r r r T n m --t N O (O M� n 0� 0 00 O m m f- w't m N m n n m(D CO N m"* 0 0 (") m m cr n N N T (nr(DLO(DLO00LoCm)ov1 O N (7 07 co Cl) co V (O 47 (!i V M M O w } w 2 m (o c2 (2 o2 m c2 m c2 m (n ca F- 0 0 0 0 C. 0 0 0 0 0 0 0 cc N N N N N N N N N N N N O LL w� T- Irsa LL,m wIL w w a 0 co 00 (D LLI Q D V } z J� w m:E m 0 o z CO aw< �11 C) � LL Ct) z p > f- a vmmV NchmNmnmmN N m m m O N N LO n Cod 00 N I- 6 O O r r r r r r r r r T T ,n-- �2 00 m N o0 n 'C'\'] (O V lO N N � N O a cc wM (O LO W r m N mr m<r m cn 0 D nM(O (O mm�(n ODmma M (O O 00 M e m N 00 V (O Er_ CO r CII It N r N N a) N r r w X a O N lO It 0 r N Qmi (� m M N (D _,qt aon m(OIOM00 N r r r N V VT- CD (O :i C'N T m n N N(O m M m m n�t (oN oOOnNnm�(On� O Cf (O (O O N m (O V n (D O M n T Nm w M N m w w O O n N O LDmLOn-t"t'twm(OOm 01 N m N m M't't m (O't It dt m T LCJ cca W } w 2 v�rav�ty a�rva�ta F- 000000000000 m N N N N N N N N N N N N O LL w} c� a Cc w m Lu ED ZIE a-�Q»C7w oww =:7 <w�¢��Qwp0w Q OaC LL z mp LU a a>w LL o �a} 0 0 0 LL aoa � o } �c 2w LL > Oa 00 � Q 0 2 m 7 0) xoC3 Q O M OO 00m m mm(D er d' N rOroovacoItc�00N o0 r r r r r r r r r r r r T T w M Lo M (D CD r- 0 V 00 O N N N m N V N W V) N U07 0 m r- O L j LM w N m Q O CD M't Di c7 n N CO C J CD M_ (D M M M M M N L N 1--- M"t w X N r > a a 1n M N m n m 0 m N CD h m N LCJ N (D V (O m Lo N O O 00 Lt] O (D N CO r LD 00 LA O 'It T r r .N- r r r(R r �R r r N T T 00CV qt Ln 000 mC) N CCDDmm LO - — O -TU) W' N D) 01 'tr (D Lfl Ili N LQ CO) T OU) rl- "trn �C`j LO C) '-t F -O N (D lA (D 00 m 0 <t 0 a0 0 0 n N m M m co It Ln LO Ln 7 C'M m T Llfa w } w x Lr1 Ln Ln Ln Ln Ln (n Ln (n m n Ln F- 0 0 0 0 0 0 0 0 0 0 0 o w N N N N N N N N N N N N O LL 00 In N V r- CD 07 m 03 CO O T N N N N CO LD L(1 Ln 7 7 N M QC r r r r r r r r r r r r T T 0 0 M 0 m LO 0 m LO 0 N N N N N N M N O a w n O N m N N O N O (D N O g LQ ql C m�N�am"I°�a (n Q IC) (D (D T Co N N O N M 0) (D W XX N r a C O 0) 01 It co M Cl) LO CO LO m N 0 CO N O CO 0 rl- T LO I�t co OI r Lf! N (r (3 r I� N m In V 0) N �2 r r r�R r� r�2 r c '�f 00 m CA � O 0) O O LO (D r CD M CD n 0f 131 lfl mr,,� O O 0 co m r m 0 m m c° m c4) co ti N m m "T It rn rn rn in 't 't LO a w w x (D co (D (D (D co co CD CD (D co CD F- O O O O 0 0 0 0 0 0 0 0 cc N N N N N N N N N N N N O LL wM CCQ Z Q QzIr J (7 QW�Q���QaU00wQcc LL c O z H W 0 Q wa �¢ Q M g❑❑( W O W w? a C) ¢w�a --3 LU ��¢a(.) UOz❑F-w 0a 00 In N V r- CD 07 m 03 CO O T N N N N CO LD L(1 Ln 7 7 N M QC r r r r r r r r r r r r T T 0 0 M 0 m LO 0 m LO 0 N N N N N N M N O a w n O N m N N O N O (D N O g LQ ql C m�N�am"I°�a (n Q IC) (D (D T Co N N O N M 0) (D W XX N r a C O 0) 01 It co M Cl) LO CO LO m N 0 CO N O CO 0 rl- T LO I�t co OI r Lf! N (r (3 r I� N m In V 0) N �2 r r r�R r� r�2 r c '�f 00 m CA � O 0) O O LO (D r CD M CD n 0f 131 lfl mr,,� O O 0 co m r m 0 m m c° m c4) co ti N m m "T It rn rn rn in 't 't LO a w w x (D co (D (D (D co co CD CD (D co CD F- O O O O 0 0 0 0 0 0 0 0 cc N N N N N N N N N N N N O LL wM CCQ Z Q QzIr J (7 QW�Q���QaU00wQcc LL c O z H W 0 Q TABLE C1.1 Existing Primary Pressure Plane Fire Flow Results Fayetteville Water Master Plan Fire de ,� F117382 Fire Flow 1!,500 Available Fire Flow @ 20 -psi at Fire Node -r= Fire Flow System Critical Node F117382 System Critical Node Pressure 18.69 Fire Node Flow oMaintainTarget i Critical Node 3,098.42 F111751 1,500 -0.20 F111751 14.37 7.720.30 F105909 1,500 -0.17 F105909 18.89 79935 F116411 1,500 0.75 J2258 9.50 779.95 F107071 1.500 0.80 F107071 18.58 3,888,18 F101489 1,500 63.26 F101489 20.00 _ 66.42 J1418 1,500 66.87 F113777 16.98 71.05 F101054 1,500 66.91 F113777 17.63 71.42 F113777 1,500 72.50 F113777 20.00 76.16 F116351 1,500 75.90 F113777 5.40 72.53 F100432 1,500 78.61 J225B 9.50 81.38 J1998 1,500 81.43 J2258 9.50 84.22 F108966 1.500 103.37 F108966 20.00 106.39 F114048 1.500 111.16 J2258 9.50 114.75 F113950 1,500 121.64 F114226 14.00 123.35 J2130 1,500 159 44 J2258 9.50 166.57 F114984 1,500 200.50 F114557 14.84 206.87 J2008 1,500 202.18 J200B 20.00 225.71 F101055 1,500 205.77 F101061 1.76 193.10 F115205 1,500 242,23 J2008 3.94 226.64 F113520 1.500 256.D2 F113520 20.00 270.04 F114243 1,500 295.69 J2008 -20.10 231.22 F113522 1,500 329.19 F101061 -13.57 280.90 Fl14459 1,500 334,11 F114459 20.00 376.97 F10385B 1,500 334.87 F105427 12.35 340.64 F100904 1,500 338.24 F105427 11.51 341.96 F100837 1,500 352.08 F105427 5-36 340.91 F102172 1,500 354.83 J200B -47.02 238.10 V1071387 1,500 355.02 F113921 13.84 399.17 F116398 1.500 366.14 F114459 13.40 382.13 F113028 1.500 368-93 F113921 12.34 395.26 F115207 1,500 373.45 J2008 -57.24 237.01 J1616 1,500 382.85 F108674 12.85 400.79 F101456 1,500 388.71 F105427 -8.56 344.82 F115208 1,500 389.70 J2008 -62.69 241.72 F104061 1,500 391.05 F114459 6.38 376.15 V103375 1.500 398.44 J2008 -65.27 243.36 FH14341 1,500 406,10 F108674 9.20 400.79 F111914 1,500 406.62 F108674 9.09 400.79 F111915 1,500 408.66 F108674 9.09 402.81 F111916 1,500 408.76 F108674 8.79 401.05 F102174 1,500 409.08 J2008 -66.06 248-66 F114228 1,500 410.83 J2008 -66.65 249.05 F114227 1,500 412.11 J2008 -67.53 248.87 F104062 1,500 412.39 F114459 8.39 405.13 FH03420 1,500 413.43 J2008 -67.98 249,16 F102119 1,500 414.13 J2008 -68.33 249.19 F102919 1,500 415.63 J2008 -69.13 249.23 J1620 1,500 416.10 F106674 7.58 400.79 F106048 1,500 424.17 F105427 -22.05 349.54 F104802 1,500 440.84 J2008 -53.16 285.71 F105497 1,500 444.47 F114459 -1.90 394-74 F115209 1,500 447.72 J2008 -67.98 270.41 V107888 1,500 449.09 F113921 6.02 404.64 F112151 1.500 451-16 F116411 14.60 973.92 F124063 1,500 45410 F114459 -2.53 40031 Fire de �, F101455 Target Fire Flow 1,500 Available Fire Flow @ 1 at Fire Node 456.20 _ Fire Flow Critical Node F105427 System Pressure -34-53 Fire No - de Flow Maintain • 1 Critical Node 353.81 F118150 1,500 461.20 F105427 -35.72 355.82 F114242 1,500 468.39 J2008 -71-58 297.52 F104801 1,500 472.03 J2008 -6285 292.60 FH14563 1,500_ 475.53 F108674 -291 40079 J1628 1,500 479,66 F108674 -3.65 400.79 F101534 1,500 485.91 F105576 6.61 461.53 F108965 1,500 486.18 1 F105427 -34,68 376.39 F102990 1,500 486-66 J2008 -4775 324.64 F113954 1.500 486.95 F105427 -39,28 369.59 F114293 1,500 492.11 F114293 20.00 528.92 J1624 1,500 492.26 F108674 -6.01 400.79 F105981 1,500 493.17 F105981 20.00 765.99 F101454 1,500 493.88 F105427 -35.20 381.47 F102604 1,500 494.68 J2008 -51.05 324.55 F101179 1,500 500.57 _ J2008 -51,22 328.09 FH03751 1,500 503.33 F113921 1.64 409.84 F101178 1,500 503.35 J2008 -54.73 324.33 J1526 1,500 503.95 F108674 -8.24 400.79 J2348 1,500 510.35 F105576 6.64 486.16 F115769 1,500 510,49 F105576 5..04 473.96 F101183 1,500 510.74 F114459 -19.17 395.01 F101182 1,500 514.50 J2008 -20.71 402.36 F116817 1,500 516.63 F113714 16.22 547.49 F104064 1,500 517.09 F114459 -15.36 410.48 F114236 1,500 517.61 J2008 -67.69 314.25 F101180 1,500 519.21 J200B -51.65 340.13 F104224 1,500 531.39 F105427 -44.72 393.26 F105498 1,500 533.48 F114459 -25.88 393.68 F101181 1,500 534:04 J2008 -42.74 366.49 F116953 1.500 537.97 F116953 20.00 602.05 F114460 1,500 544.78 J2008 -38.26 383.25 F113952 1,500 561.93 F105427 -49.52 407.36 F100452 1,500 579.30 F108674 -12,05 443.61 F101458 1,500 562.14 F105427 -48.06 424.24 FH03051 1,500 590.52 _ J2258 9.50 634.70 F101184 1,500 593.06 F114459 -42.67 396.16_ FH03041 1,500 597.60 J2258 9.50 638.75 F109469 1,500 598.88 J2258 9.50 638.75 F109693 1,500 599.18 J2258 9.50 638.75 FH03043 1,500 602.00 J2258 9.50 638.72 FH11458 1,500 603-87 F105427 -46.32 442.98 J1526 1,500 605.30 F105427 -26.08 486,74 F109702 1,500 605.47 J2258 9.50 638.71 F107281 1,500 605-59 F105427 -26.17 486.74 J3028 1.500 606,05 F108674 9.52 601.59 F112977 1,500 606.77 J2258 9.50 625.23 F109471 1,500 607.84 J2258 9.50 638.32 V107387 1,500 608.02 J2258 9-50 638.54 FH02644 1,500 609.44 J2258 9.50 638,87 F113928 1,500 609.86 F113921 4.35 545.00 FHO3042 1,500 611.82 J2258 9.50 638:73 F115063 1,500 612.03 F114459 -39.22 415.22 F11330B 1,500 612.33 F105578 -4.92 476-65 F101185 _ 1,500 612.93 F114459 -48.90 395.86 J1528 1.500 61483 F105427 -29.22 486.74 F113260 1.500 615.33 J2258 9.50 643.78 F114329 1.500 616.20 F105277 1.97 57735 F112564 1,500 617.19 F112564 2000. 755.22 FH03050 1,500 617.62 J2258 9.50 638.69 F109692 1,500 617.76 J2258 9,50 640.20 F103621 1,500 618.51 J2258 9.50 642.28 F105164 1,500 619.17 J2258 9.50 637.45 Fire de ID' F104137 Target Fire Flow 1.500 Available Fire Flow @ 20 -psi at Fire Node 619.23 Fire Flow System Critical Node F105427 System Critical Node Pressure -24.45 FIrf, Node Flow o Maintain 10. Critical Node 501.90 F102812 1.500 619.33 F105427 -50.09 447.15 F109458 1,500 622,39 J225B 9.50 650.48 F104228 1.500 623.63 F105427 -37.27 475.46 FH02643 1,500 623.87 J225B 950 639.00 F116622 1,500 625.91 F112564 19.44 755.37 V110776 1,500 625-94 F112564 19.44 755.39 F112566 1,500 626.02 F112564 19.44 755.48 F109699 1,500 626,65 J2258 9.50 64276 F100448 1,500 627.38 J2258 9.50 635.44 F105167 1,500 627.55 J2258 9.50 647.01 F105161 1,500 628.59 J2258 9.50 636.66 _ F102695 1,500 628.78 J225B 9-50 634.39 F102813 1,500 628.91 F105427 -51.72 450,94 F109691 1,500 630.06 J225B 9.50 642.04 F112567 1.500 631.49 F112564 19.08 755.46 F119164 1,500 631.62 F112564 19.08 755-61 F109454 1,500 631.88 J2258 9,50 646.52 F101533 1,500 631.91 F105578 -7.33 476.33 FH03049 1,500 632,24 J2258 9.50 638.70 FH03044 1,500 632.67 J2258 9.50 636-71 F109688 1,500 633.01 J2258 9-50 650.67 F109703 1.500 634.27 J2258 9.50 642.03 F114019 1,500 641.76 F103431 9.42 639.OB F112569 1,500 642.25 F112564 1853 757.98 J842 1,500 643.27 J225B 9.50 809.43 FH02131 1.500 649.39 F103431 7.84 639.43 F100255 1,500 649.64 F108674 4.27 597.81 F114021 1,500 650-18 _ J2258 9.50 690.50 r F113029 1,500 651.00 F113921 -12-10 414.70 F105166 1,500 652.27 F103431 8.67 _ 646.11 F107865 1,500 654-98 F103431 7.71 644.38 F113376 1,500 658.22 F112564 19.25 790-60 F105494 1,500 660.96 F105494 2000. 838.63 F109697 1.500 662-36 F103431 4.84 638.71 F119212 1,500 662-95 F119212 20-00 724.18 F101186 1,500 666.56 F114459 -55.05 415.53 F114291 1.500 668.47 F108674 -19.67 477.09 FHO3048 1,500 668.51 F103431 3.47 638.68 J2300 1.500 670.24 J2300 20.00 764.70 F105170 1.500 677.00 F103431 2.61 643.17 F101272 1,500 684.20 F10523B -0.15 533.93 F101053 1,500 693,22 F113921 _15.85 417.64 FH03046 1,500 698.26 F103431 -3.25 638.68 F109709 1,500 708.92 F103431 -313 64987 F100245 1,500 71357 F108674 -4.45 589.99 V111364 1.500 717.57 V111365 10.62 719-88 FH03047 1,500 717.57 F103431 -7.72 638.68 F104140 1,500 72273 F105238 -3.04 513.58 F109466 1,500 725.05 F103431 -9.48 638.66 F101460 1,500 725.31 F105578 -7.90 541.31 F102740 1,500 727.77 F115178 -28.49 498.99 J944 1,500 728.91 _ F115178 -28.61 499.51 F104066 1,500 741.40 F114459 -62.83 1 44620 F109462 1,500 743.28 F103431 -13.81 63867 F112928 1,500 744.37 F112927 286 653.70 F113685 1,500 752.27 F113685 20.00 879.92 F100246 1.500 754-97 F106674 •10.09 588.61 F103762 1.500 756.01 F103762 20.00 798.65 F100463 1.500 762.21 F108674 -16.07 560.79 F113684 1,500 762.51 F113684 20.00 88B-89 F109710 1.500 763.71 F103431 -18-76 638.68 F114288 1,500 1 774.29 F108674 -15,52 572.00 Fire de ID� F113951 Target Fire Flow 1,500 Available Fire Flow @ 20 -psi at Fire Node 780.26 Fire Flow System Critical Node F105238 System Critical Node Pressure -7.17 Fire Node Flow G Maintain 10 Critical Node 498.75 F101187 1,500 784.59 F114459 -66.49 465.10 F105598 1,500 806.26 F114459 1.73 742.14 F114292 1,500 816.51 F108674 -26.52 551.77 F110315 1,500 822-48 F112927 -3.89 653.70 F114457 1,500 825.74 F114459 -0.77 742.98 F100464 1,500 826.23 F108674 -32.12 534.31 F101082 1,500 829.82 F10523B •11.16 486.84 F117345 1,500 840.09 F103431 -36.87 643.37 F116524 1.500 850.56 F112927 -6.44 654.01 F104069 1,500 853.51 F114459 -68-23 503.39 F112974 1.500 854.46 J2258 9,50 857.23 V108941 1,500 856.84 F112927 -7.05 653.70 F100743 1,500 863.75 F115178 -56.26 500.63 F117861 1,500 882.10 J2258 949 925.77 F114626 1,500 888.66 F114626 20.00 1,034.76 F112511 1.500 891.49 F112511 20.00 1,002,45 V108940 1.500 892.68 F112927 .10.44 653.70 F112453 1,500 894.90 _ J2300 11.69 913.68 F108050 1,500 898.81 F103431 3.46 858.63 F102785 1.500 904.19 F105282 2.39 854.32 F103450 1,500 911.21 F108674 -37.95 565.92 F110728 1,500 913.39 F113866 17.96 949.65 F106926 1.500 915.64 F105282 2.51 865.92 F115860 1,500 91695 J225B 9.49 960.43 F113867 1,500_ 924.19 F113865 17.16 957.00 FH14189 1,500 926.80 FH14189 20.00 1,160.14 1`115223 1.500 926.88 F114459 -15.07 742.81 F116394 1.500 927.67 F116394 20.00 1,165.61 F101189 1,500 934.58 F114459 -72.11 543.23 1`103304 1,500 937.80 F103431 -3.32 857.22 F100462 1,500 939-24 F108674 -36.89 587.17 1`100449 1,500 946.36 F103431 -10.71 827.53 F101083 1,500 946.56 F105238 -20.94 473.15 F104580 1,500 948.73 F105578 10.19 952.80 F109632 1.500 949.63 F109632 20.00 984.99 F104314 1.500 952.00 F114459 -69.23 561.05 F115872 1,500 953.04 F117326 17.67 1,117.14 F106142 1,500 954.71 F114453 _ 16.12 1,004.21 F105719 1,500 962.11 F105719 20.00 1,071.02 FH10959 1,500 962.58 F105238 -22.47 470.18 F108902 1,500 972,28 F108902 20.00 1,008.53 F113866 1,500 977.12 F113866 20.00 1,020.04 F113542 1,500 977.17 F105282 6.37 950.75 V100679 1,500 977.79 J2258 9.49 1,021.48 V101475 1,500 97818 F103762 20.00 1,03364 V101123 1,500 983.16 F105238 -23.99 471.97 F114297 1,500 986.92 F108674 -3931 608.42 F113412 1,500 99123 F115178 -63.72 551.97 F100450 1,500 993.82 F103431 -1307 857.22 V100678 1.500 995.66 J2258 9.49 1,047.18 F100307 1,500 99787 F100307 2000 1,050.97 FH10870 1.500 999.10 J2258 9.50 1,035.02 F114458 1,500 1,001.44 F114459 -26.44 742.21 F102649 1,500 1.01250 J2258 9.49 1,066.08 F112446 1,500 1,014.39 F105578 7.07 953-99 F112451 1,500 1.014.61 F105578 7.05 953.72 FH11294 1,500 1.01564 F105578 6.92 952.12 FH11291 1,500 1,016.78 F10557B 6.86_ 952.12 F112450 1,500 1,016.88 F105578 6.86 952.12 J360 1,500 1,018.37 F103431 3.83 975.35 F112443 1,500 1,020.91 F105578 6.66 952.12 F112448 1 1,500 1,022.99 F105578 6.57 952.54 Fire de ,' F106445 Target Fire Flow 1,500 Available Fire Flow @ 20-psi at Fire Node 1,025.62 Fire Flow Critical Node J2258 System Pressure 9.49 Fire Nocle Flow Maintain � o- Critical Node 1.075.61 F114834 1.500 1,031.02 F112927 -4.76 809.36 FH02342 1,500 1,031,34 F105578 6.14 952.12 F116576 1,500 1,031.57 F105578 6.17 953.03 F100363 1.500 1,034.29 F103431 -13,54 889.75 V100823 1,500 1,041.26 F10B674 -39.55 639.96 F104703 1,500 1,041-40 F105578 568 953-03 F112986 1,500 1,042.54 F114012 -2.54 992.84 F103945 1,500 1,046A1 F101061 -8.09 923.00 F112447 1,500 1,047.01 F105578 5.35 952.12 V102900 1,500 1,054.20 F113700 18.50 1,115,44 F109683 1,500 1,055.12 J2258 9.50 1,091.32 F118128 1,500 1,055.50 F101003 -7.19 957.28 F106331 1,500 1,056.17 F106331 20,00 1,185,29 FF102921 1,500 1,057.79 F10_5238 -27.82 485.95 F113359 1,500 1,058.74 F113361 17.85 1.108.52 FH10869 1,500 1,059.59 J2258 9.50 1,096.09 V107528 1,500 1,061.64 F103431 -2,96 972,72 _ F116534 1.500 1,064.62 F103431 -2.35 979.84 F104579 1,500 1,067.40 F105578 435 952.84 F107818 1,500 1,068-12 F103431 •11.95 926.89 F109685 1,500 1,074.27 J2258 9.50 1.107.33 F100465 1,500 1,075.52 F108674 -38.23 665-97 F115164 1,500 1.075.60 F115184 20.00 1.131.67 F108726 1,500 1,077.25 F10523B -28.90 490.76 V107619 1,500 1,077.38 F101003 -8.74 969.28 F106979 1,500 1,079.52 J2258 9.49 1.130.87 F113929 1.500 1,080.56 F113921 -55.53 429.64 F117418 1,500 1,085.47 J2258 9,49 1,115.67 FH02344 1,500 1,087.95 F105578 3.26 952.12 FH03313 1.500 1,088.78 F103431 -7.06 972.74 F102599 1,500 1,088.89 F102599 20.00 1,206.38 F116496 1,500 1,091-04 F103431 -6.32 979.89 F101561 1,500 1,091.39 F114459 -66.50 653.19 V102777 1 500 1,095.36 F115279 -28.88 773.73 F118127 1,500 1.096.82 F103431 -8.19 973.79 F118218 1,500 1,096.87 J2258 9,49 1.153.26 FH02922 1,500 1,098.94 F105238 -30-87 485.95 FH10871 1,500 1,099.39 J2258 9.49 1.143.01 F113949 1,500 1,100.28 F105238 -34-94 463.43 F110313 1.500 1,105,58 J2258 9-50 1.158.19 J1824 1,500 1,105.92 F105578 2.42 953,88 F116498 1,500 1,108.53 F103431 -9.37 977.66 V109028 1,500 1.109.85 J2258 9-50 1,162.89 F110314 1,500 1.1 W,14 J2258 9,50 1,163.19 F102716 1.500 1,110,31 J2258 949 1,144.90 F100262 1,500 1.110.66 J2258 9.49 1,169.72 V107627 1,500 1,110.94 F103431 -9.71 977.74 F118032 1,500 1.112.27 J2258 9.50 1,165.52 F118075 1,500 1.114.42 F103431 -10-63 975.34 V110931 1,500 1.115.17 J2258 9,49 1,148,47 F116497 1,500 1.117.26 F103431 -11.23 974.32 F117178 1,500 1.117.34 F105578 1.88 955.11 F118197 1,500 1,124.87 J2258 9.49 1,174.40 J1822 1,500 1.126.21 F105578 1.31 953.08 F108727 1,500 1,128.38 F105238 -32.66 491.34 F118077 1.500 1,129.28 F103431 12,64 977.33 _ F117424 1,500 1J2966 J2258 9.49 1,181.69 F118076 1,500 1,13039 F103431 -13.22 97432 FH02398 1.500 1.133.39 J2258 9.49 1,161.79 F105718 1.500 1,13423 F105718 20.00 1,226.82 F118059 1.5001 ,139.53 F103431 -14.80 973.65 F114022 1.500 1,139-77 F103431 -16.90 962,03 Fire de .� F107048 Target Fire Flow 1,500 Available Fire Flow �. at Fire Node 1,140.87 Fire Flow Critical Node F107048 System Pressure 20.00 Fire ode Flow � Maintain 0. Critical Node 1,219.53 F116499 1,500 1,141.36 F103431 -14-90 974.72 J356 1,500 1,141.74 F103431 -15.06 973-95 J362 1,500 1,142.36 F103431 -15.09 974.72 F113312 1,500 1,144.96 F105578 -36.85 634.11 F117200 1,500 1,145.24 J2258 9.49 1,202.51 F102778 1,500 1,147.92 F105238 -40.82 450,27 F114296 1,500 1,149.77 F108674 -40-96 699.40 F113377 1,500 1,150.73 F112564 -8.07 902.58 FH10278 1,500 1,150.87 F115092 5.89 1,103.80 FH02397 1,500 1,151,07 J2258 9.49 1,201,94 1`102648 1,500 1,151,17 _ F115092 5.51 1,100.01 FH02345 1,500 1,151.26 F105578 -0.07 952.12 F100257 1,500 1,151.92 F115092 5.51 1,100.73 F113773 1,500 1,154.88 F100307 1426 1,179-94 F116299 1,500 1,155.13 F103431 17.03 974.62 F113697 1,500 1.155.52 F113697 20.00 1,299.20 J1530 1.500 1.160-33 F113921 -64.87 434.18 F105489 1,500 1,160.51 F105489 20.00 1,215,19 F111489 1.500 1.160.78 F105238 -35.43 485.95 F103190 1,500 1,16039 F115092 6-11 1,115.82 F109602 1,500 1,162.48 F109602 20.00 1,277.75 F117088 1,500 1,16457 J2258 9.49 1,215.26 FH11113 1,500 1,165.63 F113493 -34.77 629.45 F117862 1,500 1,166.63 J225B 9,49 1.196.12 F115917 1,500 1,16&79 J2258 9.49 1,223,19 FH02384 1,500 1,167.93 F105578 -0.97 95212 V102893 1,500 1,168.40 V102893 20.00 1,243.72 F102344 1,500 1.174.31 F102344 20.00 1,324.68 F113938 1,500 1.180.59 F105238 -34.99 499.69 F118055 1,500 1,184.24 J225B 9,49 1,244.74 V102947 1,500 1,167.52 V102947 20.00 1,260.03 F113435 1,500 1,191.41 J2258 9.49 1.239.61 F101572 1,500 1,192.08 F114459 -58.19 742.14 F113411 1,500 1.193.34 F115178 -69.94 642-09 F107860 1.500 1.193.46 J2258 9-49 1,233.13 F116457 1,500 1,194.26 J2258 9.49 1,234.80 F109605 1,500 1,194.82 F109605 20.00 1,300.18 F114023 1,500 1,195.21 F103431 -14-58 1,023-09 J2652 1,500 1.19522 J2258 9.49 1,238.57 F107125 1,500 1,195.44 F107125 2000 1,296.53 F105475 1,500 1,19927 F105475 20.00 1,252.76 F118285 1,500 1,200.25 J2258 9.49 1,250.93 V107490 1,500 1,202.09 F109605 19-15 1,298.21 FH03753 1,500 1,20235 FH03753 20.00 1,247.97 V101487 1,500 1,203.67 J2258 9.49 1,254.89 FH10958 1,500 1,204.44 F10523B -44-81 455.83 FH02396 1,500 1,207.52 J2258 9-49 1,250.05 F116586 1,500 1,208.46 J2258 9.49 1,250.05 F109604 1,500 1,209.56 F109602 17.84 1,300.93 FH04088 1,500 1,211.25 F113921 -72.17 434,18 F115959 1.500 1.212-12 F115959 20.00 1.301.64 F101052 1,500 1.212.13 F113921 -72.29 434.27 F102779 1,500 1.212.68 F105238 -45.33 458.88 F113329 1,500 1,213.10 F105578 -3.44 952.26 F112243 1,500 1,214.44 J2258 9.49 1,258.57 F108747 1,500 1,214,66 F105238 -45.06 457.40 F107828 1,500 1,215.22 F117327 18.16 1,455.85 F106141 1,500 1,215.43 F114453 4.08 1,162.00 F104315 1,500 1,218,15 F114459 -52.67 779.96 FH10996 1,500 1,219.39 F10523B -48.71 447-71 V104455 1,500 1,219.87 J2258 9.49 1,265.57 FH10324 1,500 1,222.32 F105278 1 18.74 1,303.09 Available Fire Flow Fire Node Flow Fire Flow System to Maintain Target p 20 -psi System Critical Node 10 -psi @ Fire Node Fire Flow at Fire Node Critical Node Pressure Critical Node ID (gpm) (9pm) ID (psi) (9pm) F116556 1,500 1,223.99 J2258 9.49 1,266-03 F115889 1.500 1,224.07 F105578 -3.71 958.32 F108381 1,500 1,224-09 J2258 9.49 1,256.18 V1D6064 1,500 1,225.22 F105282 -5,2B 1,100-93 F113320 1,500 1,225.81 F10557B -4.13 952.49 J2320 1.500 1,226.27 J2320 20,00 1.335.49 F107017 1,500 1,229 33 J2258 9.49 1,281,22 J2860 1.500 1.229.54 F105238 1 -40.45 1 485.95 F108379 1,500 1,230-59 J2258 9,49 1,251.64 F115180 1,500 1,232,17 F105282 -5.26 1,107,18 FH10579 1,500 1,23245 J2258 9.49 1,284.58 F107952 1,500 1,233.27 F105282 -5,28 1,108.16 J2072 1.500 1,233.46 J2072 20.00 1,389.93 F115910 1,500 _ 1,234,10 J2258 9.49 1,292.22 J2318 1,500 1,235,12 J2318 20.00 1,334.10 FH 10873 1,500 1,235.39 J2258 9.49 1,290.72 FH02925 1,500 1,236.37 F105238 -4725 457.12 F104698 1.500 1,23794 F105578 4.83 952,12 F101081 1,500 1,236.33 F105238 -49,92 451.45 F113331 1.500 1,241,42 F105578 -5.00 952.70 F108263 1,500 1,242-63 F113981 16.92 1.43244 F108260 1,500 1,243.66 F117327 17,25 1,455.85 F106441 1,500 1,246,02 J2258 9.49 1.296.79 V110956 1,500 1,248.06 J2258 9.49 1,302.96 F113930 1,500 1,248-19 F113921 -74.77 440.91 F108593 1,500 1,249.17 F105238 -61.15 424-46 F101405 1.500 1,249.69 1`101405 20.00 1,445.94 F107222 1,500 1250,28 J2258 9.49 1,302.44 F116044 1.500 1,250.38 J2258 9.49 1.312,60 F112854 1,500 1,251.41 J2258 9,49 1,303.60 F105991 1,500 1,253,37 F105578 -5.68 952.41 F113494 1,500 1,260.18 F113493 -40.27 651.15 F101714 1,50C 1,263,41 J2258 9.49 1,319.24 F109793 1,500 1,263-56 F105578 -6.24 952.85 V100092 1,500 1,264,74 V100092 20.00 1,343.67 V101119 1,500 1.266,81 1`105238 -52.32 453.03 F113931 1,500 1,267.40 F105238 -54.20 446.64 F101100 1,500 1,267.76 F101100 20.00 1.325.01 F115859 1,500 1,269.05 J2258 9.49 1,306-16 V100193 1,500 1,269-09 V100193 20.00 1,329.42 V102172 1,500 1.269.54 V102172 20.00 1,416.73 F112223 1,500 1,273-17 J2258 9.49 1.329.69 F108729 1,500 1,274.29 F105238 -42.35 495.01 FH10970 1,500 1,275.65 F105238 -59.32 435.01 F107282 F113686 1,500 11500 1,277.58 1,278-35 F105238 F113686 -52-01 20.00 458.35 1,495.79 F111910 1,500 1,281-64 F105238 -51.72 457.93 F103985 1.500 1,282,18 F105238 -59.88 436.59 F113982 1,500 1,283.65 F113981 16.16 1,445.49 F118090 1,500 1,283.75 J2258 9.49 1,347.60 J94 1,500 1,288.25 J2258 9.49 F101917 1,500 1,289.95 F117327 15.75 1,455.85 F112879 - 1,500 1,291.46 J2258 9.49 1,331.88 FH10972 1,500 1,292,18 F105238 -62.86 430.91 F103888 1,500 1,293-32 J2258 9.49 1,358.76 FH10874 1,500 1,294-33 J2258 9.49 1,331.21 F106438 1,600 1.294,72 J2258 9.49 1,341.43 F116552 1,500 1,295.33 J2258 9.49 1,328.10 F103983 1.500 1,301-56 F105238 -61.89 438.62 F109601 1.500 1.302.75 F109602 14-54 1,357.40 F106693 1,500 1,303.93 F117327 15.29 1,455.85 F114621 1,500 1,30458 F114621 20.00 1,479.96 Fire de ID� J58 Target Fire Flow 1,500 Available Fire Flow @ 20 -psi at Fire Node 1,306,05 Fire Flow System Critical Node J2258 System Critical Node Pressure 9.49 Fire Node Flow o Maintain 10. Critical Node 1,334.44 F114294 1,500 1,306.05 F108674 -37,31 814.38 F115119 1.500 1,306.62 F108674 -48.12 760.45 1`106436 1,500 1,306.70 J2258 9.49 1,363-05 F100466 1,500 1,307,43 F108674 -48,23 760.45 F101084 1,500 1,309.46 1`105238 -55.98 456.33 F115271 1,500 1,312.54 1`115271 20.00 1,365.91 J1570 1,500 1,314.58 FH03753 1879 1,358,16 F106134 1,500 1,321.79 J2320 19.16 1,428.76 V103618 1,500 1,322.06 V103618 20.00 1,441.07 F112858 1,500 1,322.51 J2258 9.49 1,369.74 F108261 1,500 1,323.85 Fll-7327 14.62 1,455-85 F115861 1,500 1,327-03 J2258 9.49 1,390.73 F105706 1,500 1,330.78 F105578 6.87 1,248.15 FH10872 1.500 1.331.42 J2258 9.49 1,36934 F101092 1,500 1,332.08 F105238 -67,20 434,43 F106694 1.500 1,333-60 F117327 14.29 1.455.85 F112856 1,500 1.333.94 J2258 9.49 1.370.13 F112857 1,500 1,335.23 J2258 9.49 1,369.74 F106222 1,500 1.336.87 F105238 -46.31 502.71 F113497 1.500 1,339.82 F113497 20.00 1,40770 FH10443 1,500 1,340,01 J2258 9.49 1,397.90 F100414 1,500 1,340.45 J2258 9.49 1.39841 F101918 1,500 1,341.02 F117327 14.19 1,460.67 FH02926 1,500 1,342.66 F105238 -5795 458-10 F1026B7 1,500 1,342.70 J2318 17.88 1,425.63 F1002B6 1,500 1,344.05 F107125 17.61 1,430.10 V110933 1,500 1.345.65 J2256 9.49 1,402.09 _ F112390 1,500 1.345-74 F105238 -59.31 457.51 1`108750 1,500 1,349.69 F105238 -58.66 458.46 F113683 1,500 1,349.96 F113685 19.22 1.558.76 F114295 1.,500 1,352.87 F108674 -36.17 850.16 F103362 1,500 1,352.98 J2258 9.49 1,411.80 F114625 1,500 1,355.15 F114625 20.00 1,583.58 FH14568 1,500 1,356.63 J2258 9.49 1,353.20 F107459 1.500 1.357.65 F107459 20.00 1.420.28 F112860 1,500 1,358.81 J2258 9.49 1,368.67 V110644 1.500 1,359.86 V110644 20.00 1,423.05 F103356 1,500 1,361.81 J2258 9.49 1,410.81 V108021 1,500 1.36389 J2258 9.49 1,440.57 F103357 1,500 1.364.84 J2258 9.49 1,412.72 F114032 1,500 1,366.64 J2258 9.49 1,412.48 F100763 1,500 1,367.22 F113471 -6.63 1,255.95 F101094 11500 1,368.66 F105238 -69.94 437.54 F118221 1,500 1,370.14 F105578 -12.40 954.09 F108375 1,500 1,370.20 F105578 5.33 1,248,15 V101257 1,500 1,370.20 F115178 -0.40 1.194.46 FH10444 1.500 1,372.68 J2258 9.49 1,410.81 J3064 1,500 1,375.70 F105238 -52-83 485.95 V100978 1,500 1,375.78 J2258 9.49 1,411.60 F102042 1,500 1,379.16 F105578 -12.97 1 953.66 F101399 1,500 1.379.67 F101399 20-00 1,571.10 F112220 1.500 1,380.67 V110644 19.68 1.442,58 F113869 1,500 1.382.57 F115184 11.38 1,391.73 F105273 1,500 1,382.99 J2258 9.49 1,44571 F112442 1,500 1,383.97 F105578 •13.35 952.24 F100415 1,500 1,384.21 J2258 9.49 1,412.31 FHO3916 1,500 1,385.45 FHO3916 20,00 1,515.31 F105673 1.500 1,385.66 F105578 -13.45 952.12 F112219 1,500 1,386.82 V110644 19,58 1,448-37 F102484 1,500 1.387-97 F102484 20.00 1,455.80 F113894 1,500 1.392-10 F113894 20,00 1,448.83 F108013 1,500 1 1,392.44 1 J2258 1 9.49 1.43537 Fire de ,' F106144 Target Fire Flow 1,500 Available Fire Flow @ 20 -psi at Fire Node 1,392.51 Fire Flow Critical Node F106144 -- System Pressure 20.00 Fire Node Flow Maintain �I Q- Critical Node 1,471.51 F103361 1,500 1,392.98 J2258 9-49 1,411.70 F112192 1.500 1,393.82 F103431 5.81 1,354.39 F117207 1,500 1,394.02 J2258 9.49 1.463-69 FHO2923 1,500 1,394.24 F105238 -54,64 485.95 FH10442 1,500 1.395.96 J225B 9.49 1,410.82 F101093 1,500 1.397.06 F105238 -71.75 440.63 F116554 1,500 1,400.03 J2258 9-49 1,440,14 F103351 1,500 1,401,81 F115176 6.97 1.341.35 V106502 1,500 1,402.02 J2258 9.49 1.464,55 V104056 1,500 1,402-79 J2258 9-49 1,411,52 F100416 1.500 1,403.91 J2258 9.49 1,41120 F101400 1,500 1.406.69 F101400 20.00 1,603.50 F107476 1.500 1,407.00 J225B 9.49 1,479-56 V105664 1,500 1.407.63 J2258 9.49 1,479.93 F100761 1,500 1,407.81 J225B 949 1.437,00 F101397 1,500 1,411-09 F114625 19.71 1,640.31 F100083 1,500 1,411,53 J2258 9:49 1,449.00 V108260 1,500 1,412.94 F105576 15.05 953.24 F112822 1,500 1,412.98 F112522 20,00 1,605.88 J1554 1,500 1,414.91 F105238 -63.56 463.30 F108594 1,500 1,415.20 F105578 -1525 952-32 F105469 1,500 1,415.96 F105238 -53.79_ 463.37 F10181B 1.500 1.417.31 J225B 9-49 •• F101091 1,500 1.417.77 F105238 -65.74 459.52 F102683 1,500 1,419.49 J2258 9,49 1,410,81 V107750 1,500 1,419.76 J2258 9.49 1,481.81 F113332 1,500 1,420.05 F105578 -15.55 952.24 FH10966 1,500 1,420-08 F105238 -66.03 458.85 F108752 1,500 1,420.39 F105238 -65.99 459.53 V1003BB 1,500 1,420.85 J225B 9.49 1,485.38 F110867 1,500 1.420.93 V110644 19-02 1,48023 F106447 1,500 1.421.13 J2258 9.49 1,431.79 F109598 1,500 1,421.96 F109602 9,88 1,420-47 J1548 1,500 1,423.47 F105238 -64.44 463.93 F107884 1.500 1.424,95 J2258 9.49 1,487.53 FH10973 1,500 1,426.96 F105238 -71.19 449.50 F118237 1,500 1,427.58 J2258 9.49 ••- F105470 1,500 1,428.13 F10523B -65.06 463.71 F108264 1,500 1,429.38 J2258 9.49 --- V100510 1,500 1,430.72 J2258 9.49 • - J354 1,500 1,432.38 J2258 9.49 1,500.17 F106132 1.500 1.432.91 F107125 12.34 1,459.41 V107746 1.500 1,433.79 J2258 9.49 1,482-96 V107748 1,500 1.434.37 J2258 9.49 1,_483.76 F116504 F105564 _1,500 1.500 1,434.64 1,438.17 J2258 F105564 9.49 20.00 ••• 1,561.63 V105137 1.500 1,439.04 J2258 9.49 --- V108176 1,500 1,439.11 F105238 -62.68 474.38 F106980 1.500 1,439.33 J2258 9.49 F101087 1,500 1,440,69 F105238 -66.49 463.11 F109807 1,500 1.441.34 F109807 20.00 1,509.38 F105992 1,500 1,441.34 F10557B •16.81 953.13 FH10452 1.500 1.442.36 F115178 6.10 1,363.56 FH10962 1,500 1,445.33 F105238 -67.02 462.85 F113543 1.500 1.445.45 F105282 1184 1,247.82 F109806 1,500 1,446.29 F109806 20.00 1,515.14 FHO3503 1,500 1,446,97 F105238 .67.03 463.30 F116919 1,500 1,447-18 1 F116919 j 20.00 1,520.51 F113427 1,500 1,447.35 F115178 7.93 1,403.91 F101086 1,500 1,448.16 F105238 -67.08 465.10 F116328 1,500 1,448.95 F116328 20.00 1,516.03 F109808 1,500 1,450-14 F109807 19.70 1,517.03 Fire de .' F113410 Target Fire Flow 1,500 Available Fire Flow @ �. at Fire Node 1,450.62 Fire Flow Critical Node F115178 System Pressure 73,35 Fire Node Flow � Maintain 0, Critical Node 764-72 J346 1.500 1,451.38 J2258 9.49 ••• F103397 1,500 1,451-64 J2320 12.32 1,479.25 V10128O 1,500 1,451.69 J225B 9-49 1,454.28 F102043 1,500 1,452.35 F105578 -17.48 953.36 F102745 1,500 1,452.42 F102745 20.00 1,535.18 F110161 1,500 1,452-93 F105238 -64.13 474.38 F102901 1,500 1,454.15 F102901 20.00 1,782.83 F100758 1,500 1,454-91 F102745 20.00 1,537.88 J348 1,500 1,45498 J2258 9.49 ••- FH03488 1,500 1,455.66 F105238 -64.42 474.37 F108254 1,500 1,457.77 F117327 9,42 1,442.13 F100405 1,500 1,459.41 F115178 7,35 1,403.91 FH03157 1,500 1,459.48 FH03157 20,00 1,531,08 F118006 1,500 1,460.50 1`118006 20.00 1,534,45 F102040 1,500 1,461.03 F105578 -18.09 952.34 V110553 1,500 1,462.43 V110553 20.00 1,531.14 F114988 1,500 1,462.65 F114988 20.00 1,558.51 F113979 1.500 1.462.77 F117327 12.15 1,525.89 V107742 1,500 1.463.29 J2258 9.49 F103365 1,500 1,464.95 F115178 7.08 1,403.91 J1422 1,500 1,465.57 J1422 20.00 1,569.72 F102478 1,500 1,465.69 F115178 7..05 1.403.91 F118169 1,500 1.466.19 J2258 9.49 F118915 1,500 1,467.58 F11517B 6.96 1,403.91 F118105 1,500 1,468.62 J2258 9.49 F102768 1.500 1,469.50 J2258 9.49 1,498.45 FH03153 1,500 1,469.63 FH03153 20,00 1,540.58 F113188 1,500 1,470.18 J225B 9-49 - F110528 1,500 1,470.69 FH03916 15.20 1,537.92 F103366 1,500 1,470.97 F115178 6.79 1.403.91 1`113935 1,500 1,471.13 F105238 -73.32 460.37 J460 1,500 1,471.42 FH03916 15.46 1,542,29! 1`104994 1,500 1,472-50 F104994 20.00 1,686.92 F106913 1,500 1,47363 F113497 17.76 1,530,93 1`109805 1,500 1,473,89 F109806 19.23 1,538.26 F103193 1,500 1,475.45 J2258 9,49 ••. F115320 1,500 1,475.77 J2258 9.49 F100430 1,500 1,476.74 J2258 9,49 _ 1`105221 1,500 1,477.18 F105221 20-00 1.572.00 F106698 1,500 1,47251 F117327 11.65 1.525.89 1`110163 1,500 1,478,40 F10523B -66.83 474.46 F105723 1,500 1.479.82 V103604 17.93 1,727.26 V109271 1,500 1,479.86 FH03916 15.61 1,553.24 FH10449 1,500 1,480.34 F115178 2.81 1,339.81 F108257 1,500 1,480.92 F117327 8-44 1,438.95 V108020 1,500 1,481,55 F116919 18.38 1,543.62 FH10969 1,500 1,481.95 F105238 -74.43 457.22 F113330 _ 1,500 1,482.23 F105578 -19.41 952.71 F107676 1,500 1,482.90 F107676 20.00 1,643.70 FH02393 1,500 1,483.35 F115178 6.54 1,410.73 FH14243 1,500 1,483.76 F115178 6.17 1,403.91 F108511 1,500 1,484.20 F117327 10.30 1,492,71 _ F101916 1,500 1,484.78 F117327 11.05 1,515.08 J1074 1,500 1,484.60 J1074 20.00 1,556-12 F115886 1.500 1,48825 F105238 -67,66 476.43 FH03581 1,500 1,488.33 F105238 -71.57 463.30 F112984 1.500 1.488.61 J2258 9.49 --- F107225 1,500 1,488,86 1`115178 6,48 1,414.96 F112252 1,500 1,489,35 J2258 9.49 F102650 1,500 1,489.92 J2258 9.49 F100261 1,500 1,490,56 J2258 9-49 1`100283 1,500 1,490.82 1`114453 3.59 1,419.88 Fire de .' F118918 Fire Flow 1,500 Available Fire Flow @ 20 -psi at Fire Node 1,491.60 Fire Flow System Critical Node 17115178 System Critical Node Pressure 5.87 Fire Node Flow Maintain oTarget , Critical Node 1.405.69 F117882 1,500 1,493.92 17117882 J20.00 1.704.68 _ FH10604 1,500 1,494.28 F115178 8.41 1,193.61 F115091 1,500 1,495.30 F117327 11.05 1,525.89 J1550 1,500 1,49565 17105238 72.38 463.30 FH10963 1,500 1,495.74 F105238 72.83 462.52 FHO3585 1,500 1.496.15 F105238 -72.44 463.28 F106143 1,500 1,496.16 F106143 20.00 1.592.26 F117416 1.500 1.497.92 F117416 20.00 1,675.78 F101089 1.500 1,498.04 F105238 -72.69 466.24 V106501 1,500 1,499-46 J2258 9.49 •-- J1546 1,500 1,499.55 F105238 72.81 463.31 Hilldale r L Z 7 C7 f -r +T> J C LI y Q n f erry q F a - i r S N 1 G i !Y U L z z N�oka 5� V� yea f_ LEGEND a 2a CITY LIMITS E PLANNING BOUNDARY 0 0-500 GPM >r 0 500-1000 GPM O 1000-1500 GPM • 1,500+ GPM HI EXISTING TOWNSHIP I PRESSURE PLANE Map Source: City of Fayetteville GIS c nar e FIRE FLOW ANALYSIS Dau Source: InfoWater Hydraulic Model E Arte EXHIBIT C1.2 TABLE C1.2 Existing Township Pressure Plane Fire Flow Results Fayetteville Water Master Plan Fire Node ID F106407 Target Fire Flow .. 1,500 Fire Flow @ 20 -psi at Fire Node .. 681.04 Available Fire Flow Critical Node . F106407 System .. Pressure 20.00 Fire .. Flow to Maintain Critical Node .. 843.14 F106404 1,500 728.32 F106404 20.00 796.09 F107715 1,500 818.08 F106404 16.62 866.29 F112924 1,500 931.53 F112924 20.00 1,115.37 J3280 1,500 1,033.93 J3280 20.00 1,248.57 F100093 1,500 1,036.37 F112924 19.90 1,239.02 F108209 1,500 1,039.23 F114817 15.67 1,102.77 F115015 1,500 1,135.53 F115015 20.00 1,374.51 FH10097 1,500 1,184.13 F106404 -3.23 1,071.74 FHO2198 1,500 1,249.21 F115015 16.31 1,401.36 V100262 1,500 1,268.82 F103077 16.21 1,340.59 V106209 1,500 1,272.03 F114817 -4.27 1,118.59 F102290 1,500 1,329.97 F104945 19.18 1,526.66 F108212 1,500 1,400.95 F114917 17.31 1,513.88 V108165 1,500 1,427.27 V108165 20.00 1,641.14 F106406 1,500 1,436.31 F115015 15.60 1,586.47 F106402 1,500 1,562.81 F106402 20.00 1,699.55 FH11961 1,500 1,740.75 F114817 9.33 1,725.51 F102287 1,500 1,762.71 F114817 8.52 11733.20 FH11960 1,500 1,887.79 F114817 13.29 1,953.14 F110614 1,500 1,892.44 F115015 10.36 11903.30 J790 1,500 1,905.28 V108165 13.07 1,978.82 F112327 1,500 1,976.73 F115015 10.13 1,980.54 F102310 1,500 2,081.79 F104944 18.41 2,220.02 FHO3942 1,500 2,206.15 FH03942 20.00 2,372.42 J2114 1,500 2,224.72 FH03942 18.95 2,373.03 F112337 1,500 2,331.06 F106407 11.20 2,383.33 F112339 1500 2,339.14 F106407 11.02 2,383.12 F112344 1,500 2,430.87 F115015 -3.14 2,028.87 F112335 1,500 2,453.10 F106407 8.68 2,392.07 F112331 1,500 2,768.94 F106407 1.40 2,400.23 S Askew Dr \N Ravenswood a c m Map Source: City of Fayetteville GIS Data Sourcc: InfoWater Hydraulic Model LEGEND .A CITY LIMITS PLANNING BOUNDARY o 0-500 GPM 6 500-1000 GPM 0 1000-1500 GPM 1,500+ GPM Nt EXISTING SOUTH MOUNTAIN PRESSURE PLANE FIRE FLOW ANALYSIS EXHIBIT C1.3 TABLE C1.3 Existing South Mountain Pressure Plane Fire Flow Results Fayetteville Water Master Plan Available.. Fire Node ID V106075 Target Flre Flow (gprn) 1,500 Fire Flow @) 20 -psi at Fire Node.. .. 1,201.74 System . V106075 System Critical .. 20.00 Flow to Maintain . .. 1,248.52 F100545 1,500 1,236.74 F100545 20.00 1,298.09 F100542 1,500 1,239.28 F100542 20.00 1,298.06 FH10465 1,500 1,255.42 FH10465 20.00 1,305.40 F100544 11500 1,258.21 F100544 20.00 1,317.04 FH10468 1,500 1,263.11 F100544 18.59 1,313.57 F100543 1,500 1,277.89 F106202 19.21 1,335.84 F106024 1,500 1,282.68 F100544 15.39 1,314.26 F1DB614 1,500 1,287.97 F100544 14.37 1,313.57 F1D8596 1,500 1,289.77 F100544 14.19 1,314.26 F1D8597 1,500 1,292.93 F100544 13.61 1,314.02 F1D8615 1,500 1,298.94 F100544 12.51 1,313.57 F105313 1,500 1,307.78 F105313 20.00 1,365.53 F100520 1,500 1,319.05 F100544 9.70 1,317.34 F113395 1,500 1,332.58 F100545 15.17 1,366.55 F100541 1,500 1,341.85 F106202 14.65 1,372.19 F107964 1,500 1,348.64 F105311 14.43 1,375.89 F102485 1,500 1,465.58 F106202 5,69 1,435.91 F107965 1,500 1,501.04 F105311 9.96 1,500.75 FH10460 1,500 1,506.70 F106202 8,96 1,499.01 F116098 1,500 1,507.13 F106202 15.08 1,546.56 FH10409 1,500 1,508.01 F100545 12.33 1,526.06 F107971 1,500 1,508.76 F100545 11.11 1,517.26 F107968 1,500 1,509.50 F100545 12.41 1,528.16 F100546 1,500 1,511.78 F1062D2 8.22 1,498.67 F100504 1,500 1,519.14 F100545 14.27 1,553.04 F113397 1,500 1,523.41 F100545 9.12 1,516.71 FH10410 1,500 1,529.84 F106202 13.29 1,555.76 F1D0502 1,500 1,531.85 F100545 11.53 1,543.85 F106025 1,500 1,551.33 F100545 9.57 1,548.00 F100507 1,500 1,577.20 F100545 0.64 1,507.03 F103503 1,500 1,579.21 F100545 6.14 1,548.94 F100506 1,500 1,612.08 F100545 -2.30 1,518.98 F100503 1,500 1,618.19 F100545 1.45 1,551.19 F100505 1,500 1,655.54 F100545 -4.78 1,541.56 F102482 1,500 1,731.22 F100545 -12.33 1,556.93 F1D3488 1,500 1,789.81 F100545 -16.59 1,578.56 F100377 1,500 1,822.18 F100545 -14.93 1,616.61 L Z w l7 O J J i o 5aZ�% CY LL i Ln Z m m a s Ln 0 f - - Ur w 000 4-o0 W J zaw LULU J Z o t Z o c 0 N LL ~ J L. O O u1 W U d o Ln of y CP r - p � 4 phi s p xg auoasc tj GJ to, to C } ss�ia�scrssd�a � r + ,� Q A y e C)IIOH Addey G r c, k ro 4 p O _ Di � I � � 4 C Q p n a w �. knji C T 0V- L v DAV c�3�ald Ott to � - an � s� b� V rr —a N a c �nkr paom +a F-- f L A M t�� a � N � --_ LD z L any aay14 i vt a y Ksr an c a y �,i `• u, ^ v �, N m o 3' Cv ` Q -. AV O 0. an1 a V �7 U S ;PA i n ands 55g 3 TABLE C1.4 Existing Mt. Sequoyah Pressure Plane Fire Flow Results Fayetteville Water Master Plan Fire Node ID F108266 Target Fire Flow ..... 1,500 Fire Flow at Fire Node.. 1,129.19 Available Fire Flow F108266 System .. 20.00 Fire Node Flow to Maintain . Critical ,, 1,253.86 F105561 1,500 1,174.50 F105561 20.00 1,394.10 F102952 1,500 1,258.55 F102952 20.00 1,302.31 F106328 1,500 1,270.39 V102658 0.31 1,209.59 F106332 1,500 1,296.31 F106332 20.00 1,342.58 F102862 1,500 1,316.19 V102658 1.26 1,259.03 F110486 1,500 1,326.96 F110486 20.00 1,374.74 11584 1,500 1,336.97 11584 20.00 1,388.69 F118549 1,500 1,338.00 F118549 20.00 1,425.72 F113296 1,500 1,341.26 F113297 20.00 1,461.77 FH11226 1,500 1,342.31 V106198 -1.55 1,269.27 F104458 1,500 1,353.31 F104458 20.00 1,450.06 J2092 1,500 1,355.29 J2092 20.00 1,534.81 F118513 1,500 1,358.21 F118513 20.00 1,444.23 F102566 1,500 1,358.32 V102658 -5.43 1,258.79 F113195 1,500 1,362.43 F113195 20.00 1,444.11 F118515 1,500 1,362.47 F118549 17.92 1,431.87 F102570 1,500 1,375.84 F114411 12.77 1,397.68 FHO2377 1,500 1,376.33 FH02377 20.00 1,435.80 F111800 1,500 1,381.24 F111800 20.00 1,468.12 F101751 1,500 1,381.36 F101751 20.00 1,640.77 V102662 1,500 1,389.41 V102658 -7.32 1,276.29 F118519 1,500 1,401.33 F118549 14.05 1,436.56 F107311 1,500 1,420.01 F107311 20.00 1,468.58 F104971 1,500 1,421.38 F110486 14.80 1,446.23 J2338 1,500 1,421.79 F113195 13.18 1,447.38 F102567 1,500 1,426.76 V102658 -10.49 1,292.08 F118514 1,500 1,443.65 F118549 9.71 1,441.17 FH12017 1,500 1,444.54 V102658 8.36 1,432.15 F108200 1,500 1,447.31 V102658 -7.21 1,330.04 F108199 1,500 1,449.33 V102658 -6.93 1,333.89 F118512 1,500 1,449.85 F118549 9.42 1,444.80 F114413 1,500 1,452.03 F114413 20.00 1,625.70 V102647 1,500 1,455.19 V102658 -11.12 1,314.18 F102860 1,500 1,465.65 V102658 -9.76 1,331.62 F102861 1,500 1,465.84 V102658 •10.04 1,329.98 F102564 1,500 1,466.51 V102658 -10.15 1,329.98 F114729 1,500 1,485.32 V102658 -8.02 1,360.16 F113971 1,500 1,490.85 F113971 20.00 1,586.25 F108204 1,500 1,495.42 V162658 -6.20 1,380.73 M LuLA Ln � z ® §� <¥ /° < . § tD — z� m_ w� \ ®I %V)CL 0 2 �2 PL)0CL LU LU §LU ��. §ƒ §§makD k-+ L� . �z076o Pli u0.0LA $ � . c � § ■ � � J 2 � ` . . s■ . � � r lm « J + % Pli _IZ p ,e � v E ƒ\;. � �� - ,- � - • || [\ ~ (� �\ } TABLE C1.5 Existing Gulley Pressure Plane Fire Flow Results Fayetteville Water Master Plan Fire Node ID F116352 TargetFlow Fire Flow .. 1,500 Available Fire Flow i. at Fire Node .. 261.40 Fire Flow Critical Node . F114110 System .. Pressure 17.69 Fire .. to Maintain 0. Critical Node .. 331.73 F100375 1,500 269.80 F114110 12.05 285.76 F116867 1,500 274.64 F114110 11.32 284.80 FH10401 1,500 279.20 F114110 10,73 284.80 F112369 1,500 279.80 F114110 13.03 304.84 J1016898A 1,500 281.57 F114110 10.44 284.86 F112303 1,500 284.12 F114110 10.13 285.02 J3256 1,500 284.63 F114110 10.04 284,86 F102673 1,500 290.91 F114110 9.61 287.83 F109596 1,500 290.99 F114110 9.72 288.75 F112302 1,500 293.31 F114110 8.92 285.07 J2962 1,500 301.54 F114110 15.48 356.50 F112110 1,500 304.32 F114110 7.44 285.04 F112304 1,500 350.07 F114110 12.38 374.12 J2294 1,500 354.46 F114110 3.00 301.16 F115246 1,500 374.56 F114110 -2.34 287.79 F112213 1,500 414.69 F114110 9.63 410.41 FH10400 1,500 464.45 F114110 -18.26 284.86 F112214 1,500 466.30 F114110 -18.15 287.29 FH02787 1,500 491.50 FHO2787 20.00 873.01 F100203 1,500 525.01 F114110 6.55 481.96 F102929 1,500 561.64 F102929 20.00 607.69 F109594 1,500 566.78 F114110 •38.55 284.86 F104866 1,500 569.81 F104866 20.00 617.72 F109570 1,500 589.12 F114110 -43.29 285..19 F107313 1,500 595.04 J1598 18.56 664.35 J1726 1,500 598.16 FH02787 17.59 873.01 F109593 1,500 613.28 F114110 -48.57 285.57 F114303 1,500 613.47 J1598 16.25 663.66 FH11886 1,500 615.59 FH11886 20.00 671.95 FH02785 1,500 618.78 F114110 -49.98 284.86 FH11892 1,500 621.20 FH11892 20.00 690.13 F107299 1,500 624.43 F107299 20.00 683.20 F102175 1,500 628.50 FH11892 19.47 693.59 V100450 1,500 631.16 FH02787 17.66 925.41 F102928 1,500 641.30 J1612 18.73 685.32 F114247 1,500 646.15 F104866 12.65 659.36 J1592 1,500 651.38 11598 14.10 685.26 F109588 1,500 657.78 F114110 -58.96 285.18 F113278 1,500 660.96 F107299 18.44 712.91 FH12072 1,500 661.62 J1598 12.74 684.24 Fire Node ID F109587 Target Fire Flow ,. 1,500 Available Fire Flow @ 20-psi at Fire Node .. 664.30 Fire Flow System Critical Node F114110 System Critical .. Pressure -60.59 Fire Node Flow to Maintain . Critical Node ,, 284.86 FH11885 1,500 664.56 F104866 11.98 674.64 F105734 1,500 665.93 J1598 12.33 685.11 F105108 1,500 666.60 J1598 12.43 686.64 F105109 1,500 671.16 J1598 11.63 684,58 FH11168 1,500 675.36 J1598 14.34 713.14 FH02778 1,500 675.39 F114110 -63.18 284.86 F109556 1,500 675.68 F114110 -62.63 287.69 FH12066 1,500 676.04 J1598 9.43 671.53 F109584 1,500 676.20 F114110 -63.46 284.86 F102173 1,500 678.36 F102173 20.00 758.65 F114304 1,500 682.24 11598 9.00 674.33 FH12064 1,500 685.90 J1598 9.79 684,24 F108590 1,500 686.08 11598 13.47 716,25 FH02784 1,500 688.58 F114110 -66.48 284.86 F101650 1,500 689.30 11598 13.44 719.14 F114306 1,500 691.19 J1598 9.20 684.75 F109564 1,500 691.31 F114110 -67.12 284.86 F105105 1,500 691.37 J1598 9.23 685.15 FH02781 1,500 691.80 F114110 -67.25 284.86 FHO2786 1,500 692.06 F114110 -67.34 284.86 F109575 1,500 692.37 F114110 -66.22 289.64 F109567 1,500 693.42 F114110 -67.49 285.45 F109566 1,500 694.49 F114110 -67.91 284.86 F102420 1,500 695.18 11598 8.73 684.91 1`109565 1,500 696.61 F114110 -68.05 286.42 F106124 1,500 697.02 11598 11.95 713.90 F102399 1,500 697.74 11598 8.56 686.14 FH11884 1,500 697.95 F107299 16.55 739.91 V103728 1,500 699.01 11598 8.44 686.40 F109581 1,500 699.30 F114110 -66.55 295.26 FH02783 1,500 700.87 F114110 -69.52 284.86 F109579 1,500 701.16 F114110 -68,54 289.09 F105107 1,500 702.25 11598 8.11 686.99 F114911 1,500 703-22 J1612 16.66 739.66 F109582 1,500 703-33 F114110 -70.14 284.86 F109576 1,500 705.01 F114110 -70.55 284.86 FH12063 1,500 706.61 J1598 7.23 684.24 F102415 1,500 707.69 J1598 7.38 686.54 FH02378 1,500 708.68 J1598 6.97 684.24 F109562 1,500 708.71 F114110 -71.44 284.86 F102416 1,500 710.44 11598 7,29 688.61 F102985 1,500 711.23 J1598 6.71 684.71 FH02779 1,500 712.74 F114110 -72.45 284.86 FH11167 1,500 716.24 J1598 9.63 713.14 F114454 1,500 720.90 F114454 20.00 779.79 1`112746 1,500 721.22 J1598 9.24 714.78 1`107318 1,500 727.69 J1598 13.56 760.41 Node ID FH12065 Target Fire Flow ..... 1,500 Available Fire Flow 0. at Fire Node 728.72 Fire Flow Critical Node J1S98 System .. Pressure 4.44 Fire Node Flow to Maintain O. CriticalFire g, 684.24 F102417 1,500 728.85 J1S98 _ 4.42 684.24 F102398 1,500 732.19 11598 4.17 685.61 F103182 1,500 742.05 F103182 20.00 808.01 J3412 1,500 743.05 11598 10.70 749.40 11428 1,500 744.68 F114110 -80.59 284.86 FH12101 1,500 744.97 J1598 10.49 749.40 FH12062 1,500 748.49 J1598 10.10 749.40 F108591 1,500 749.97 J1598 5.71 713.78 F102992 1,500 750.49 J1598 3.05 694.25 F102981 1,500 750.50 11598 4.54 705.30 FH12069 1,500 750.78 J1598 4.38 704.24 FH12068 1,500 751.33 J1598 2.88 693.68 V107755 1,500 756.86 J1598 10.91 765.42 FH12090 1,500 766.99 J1598 9.51 762.51 FH03688 1,500 767.09 11598 9.81 765.42 F102603 1,500 769.39 11598 0.72 694.78 FH10335 1,500 770.65 J1598 9.43 765.38 F115204 1,500 775.72 J1598 2.62 714.00 F102418 1,500 776.27 J1598 1.49 706.41 F112749 1,500 777.14 J1598 2.34 713.14 FH14443 1,500 777.19 J1598 2.33 713.14 F100298 1,500 777.27 J1598 9.24 770.29 F112747 1,500 779.15 J1598 2.09 713.14 V100720 1,500 783.30 J1598 8.35 768.08 V110738 1,500 784.94 11598 6.04 749.40 F103385 1,500 785.20 11598 8.60 772.30 F114255 1,500 787.23 J1598 7.85 767.49 F102412 1,500 787.42 J1598 5.76 749.40 F112741 1,500 792.67 J1598 0.56 714.23 F112435 1,500 792.98 J1598 1 5.17 749.83 F103383 1,500 795.77 J1598 7.20 770.09 F103212 1,500 796.73 11598 6.97 768.88 F103206 1,500 797.54 J1598 6.50 765.42 F114308 1,500 798.26 J1598 4.73 751.20 F100290 1,500 799.86 11598 6.62 768.82 F114245 1,500 800.82 J1598 5.93 763.78 F103387 1,500 807.32 J1598 6.45 774.79 F102471 1,500 807,37 J1598 6.41 774.45 V100722 1,500 807.56 J1598 5.39 765.42 F102419 1,500 810.31 J1598 -1.70 713.73 F100296 1,500 810.71 J1598 5.26 767.40 F100288 1,500 815.38 J1598 4.62 766.33 F102388 1,500 815.45 J1598 4.37 764.32 F103384 1,500 817.04 J1598 4.46 766.55 FH10337 1,500 817.13 J1598 4.32 765.38 F114284 1,500 818.17 J1598 4.67 769.55 F105094 1,500 822.39 J1598 3.16 760.68 Fire Node ID F114244 TargetFlow Fire Flow ..... 1,500 Available Fire Flow at Fire Node 823.36 Fire Flow Critical Node J1598 System .. Pressure 3.33 Fire Node to Maintain . CrItical Node ,, 763.06 F114282 1,500 824.13 11598 3.89 768.57 F100295 1,500 826.47 11598 3.59 768.20 F100254 1,500 826.71 F100254 20.00 903.28 F106119 1,500 827.17 J1598 3.12 765.10 F112745 1,500 828.01 J1598 -4.01 713.14 FH12100 1,500 830.80 J1598 2.86 766.01 FH10339 1,500 833.95 J1598 2.43 765.42 FH12085 1,500 834.23 J1598 1.81 760.56 F100297 1,500 834.89 J1598 2.51 767.03 FH12084 1,500 834.90 J1598 1.68 760.19 FH10340 1,500 835.36 J1598 2.28 765.45 F103201 1,500 837.71 J1598 2.59 770.55 FH10334 1,500 838.95 J1598 1.86 765.36 F104865 1,500 839.21 F102173 14.06 877.17 F107687 1,500 839.22 J1598 1.78 765.40 F100289 1,500 839.40 J1598 1.87 765.87 F102407 1,500 839.69 J1598 1.89 766.65 F102425 1,500 840.75 J1598 1.10 760.86 F105092 1,500 841.31 J1598 1.04 760.98 F102386 1,500 846.70 J1598 0.64 762.85 F103204 1,500 848.01 J1598 1.42 770.50 F100291 1,500 848.52 J1598 1.46 771.40 F102424 1,500 849.00 J1598 0.30 762.29 FH12088 1,500 849.52 J1598 -0.06 759.70 F107686 1,500 850.42 J1598 -0.20 759.53 FH12093 1,500 850.64 J1598 -0.53 757.07 F107685 1,500 851.19 J1598 0.01 762.08 F103205 1,500 851.65 11598 0.77 768.45 FH02968 1,500 852.12 J1598 -0.38 759.47 F102976 1,500 852.17 J1598 -0.61 757.86 F107688 1,500 855.97 J1598 -0.74 760.58 F103374 1,500 857.42 J1598 0.35 770.57 F109155 1,500 860.11 J1598 -1.27 759.82 F109154 1,500 861.29 J1598 -1.45 759.47 F115113 1,500 864.85 F114110 -7.79 613.15 F103393 1,500 864.85 J1598 -1.12 765.19 F105089 1,500 865.31 11598 -1.85 760.11 F102408 1,500 865.89 J1598 -1.45 763.68 F109159 1,500 867.10 J1598 -1.77 762.47 F103215 1,500 871.40 J1598 -1.58 767.76 F100294 1,500 873.96 11598 -1.73 768.98 F114252 1,500 877.40 F114252 20.00 966.90 F109158 1,500 877.63 J1598 -2,96 762.84 FH10336 1,500 888.80 11598 -3.88 765.38 FH12094 1,500 889.45 J1598 -5.26 755.97 F102387 1,500 891.69 J1598 -4.70 762.10 F107692 1,500 891.78 J1598 -4.62 763.59 Fire Node ID F105097 TargetFlow Fire Flow ..... 1,500 Available Fire Flow at Fire Node 892.06 Fire Flow Critical Node J1598 System Pressure -4.03 Fire Node to Maintain , Critical ,, 767.48 F100292 1,500 893.31 J1598 -4.09 768.14 F103377 1,500 895.72 J1598 -4.48 767.18 F115814 1,500 896.37 J1598 -5.92 757.36 FH12096 1,500 897.81 J1598 -6.25 756.03 FH10333 1,500 899.15 J1S98 -5.10 765.38 F105096 1,500 899.54 J1S98 -S.14 766.41 FH12082 1,500 900.16 J1S98 -S.35 764.40 F100293 1,500 901.79 -11598 -4.95 769.29 F103376 1,500 902.50 J1598 -5.36 766.48 F103399 1,500 902.55 J1598 -5.35 766.68 F103380 1,500 903.02 11598 -5.03 769.86 F103375 1,500 904.22 11598 -5.45 767.48 F115812 1,500 907.81 J1598 -7.48 755.82 FH12097 1,500 908.75 -11598 -7.23 758.31 F110892 1,500 914.95 J1598 -7.34 764.26 F114299 1,500 916.89 31598 -12.75 730.01 F105099 1,500 919.15 J1598 -7.58 764.63 F102410 1,500 923.07 J1598 -8.00 764.97 F102409 1,500 924.35 J1598 -11.11 746.20 V103682 1,500 927.06 11598 -7.99 769.07 F107294 1,500 929.05 J1598 -8.14 7.69,92 FH12D92 1,500 929.15 J1598 -11.91 744.47 F102391 1,500 930.74 31598 3.37 863.88 F105079 1,500 936.72 J1598 -8.11 777.42 FH03053 1,500 936.87 J1598 -11.18 754.91 J1608 1,500 942.00 J1608 20.00 1,039.42 J1606 1,500 952.09 J1598 17.64 1,048.25 F102427 1,500 955.44 J1598 -12.58 761.86 FH02181 1,500 956.84 J1598 -12.28 763,7S F10S104 1,500 959.17 J1598 -14.99 748.85 F107684 1,500 960.78 J1598 -12.89 764.73 F107319 1,500 963.87 J1598 -15.46 749.58 F102426 1,500 968.85 J1598 -15.95 750.79 F105100 1,500 972.34 J1598 -13.68 767.91 F106120 1,500 976.58 J1598 -17.06 749.72 F106127 1,500 977.05 J1598 -14.10 769.21 FH12099 1,500 978.38 11598 -14.48 766.70 11610 1,500 979.19 J1598 15.40 1,046.60 FH12073 1,500 981.84 J1598 -17.55 750.71 F107323 1,500 990.72 J1598 -18.61 751.95 V108040 1,500 992.47 J1598 -18.30 754.13 V103710 1,500 1,000.05 J1598 -19.43 753.22 F105082 1,500 1,000.24 J1598 -16,96 768.64 F114298 1,500 1,002.49 J1598 -20.14 751.16 F102423 1,500 1,009.49 J1598 -17.18 774.23 F112177 1,500 1,012.48 J1598 -18.74 767.70 F111876 1,500 1,013.23 J1598 -19.34 763.79 Available Fire Flow Fire Node Fire Node ID F105096 Target Fire Flow .. 1,500 Fire Flow @ 20-psi at Fire Node gp 1,014.74 System Critical Node J1598 System Critical Node Pressure -18.22 Flow to Maintain 10-psi @ Critical No&z .. 771.97 F114254 1,500 1,027.48 J1598 -13.70 814.22 F102411 1,500 1,028.54 J1598 -20.68 767.46 F107295 1,500 1,042.30 J1598 4.64 981.29 F102393 1,500 1,043.95 J1598 2.08 957.77 F112094 1,500 1,050.53 J1598 -24.56 761.19 F100355 1,500 1,082.78 F100355 20.00 1,312.27 F102644 1,500 1,092.76 F114110 7.89 1,034.04 V110748 1,500 1,094.49 J1598 5.93 1,045.26 F100198 1,500 1,101.28 F114110 7.65 1,034.04 F103172 1,500 1,105.59 F114110 7.72 1,039.98 F112438 1,500 1,110.21 J1598 6.33 1,065.08 F114106 1,500 1,165.57 F114106 20.00 1,393.80 F114253 1,500 1,228.24 J1599 5.21 1,164.89 F100204 1,500 1,258.29 F114110 -7.54 888.20 F100354 1,500 1,313.49 F100354 20.00 1,530.67 F100202 1,500 1,358.54 F114110 -17.58 843.27 F100352 1,500 1,360.93 F114110 -8.42 947.57 F106758 1,500 1,370.62 FH02787 4.44 1,141.32 FH10236 1,500 1,372.14 FH02787 4.63 1,148.03 F100201 1,500 1,382.51 F114110 -5.65 1,001.56 F118382 1,500 1,383.72 FH02787 12.49 1,546.56 c. Z�L� � �$LU \ ��§\� LU\� � � < z z LD :1Ln co�� _m LA CL V, LU x2Q0, �L� �U/§§\f U zko§\ u�0Ln- , 0000& � ■ � . , .2 �m .� � ) � () �® k TABLE C1.6 Existing Goshen Pressure Plane Fire Flow Results Fayetteville Water Master Plan Fire de ,� FH03468 f Targpt Fire Flow 1.500 Available Fire Flow @ 20 -psi at Fire Node 590.18 Fire Flow System Critical Node F112076 System Critical Node Pressure -4832 Fire Node Flow to Maintain I D - P.9 i @) Critical Node 398.64 F114165 1,500 63855 F112076 -54,27 415.11 F114114 1.500 655.16 F112076 -7.49 572.52 FH03465 1,500 697.02 F112076 -17.57 572.52 J1476 1,500 705.76 F112076 -18.77 576.52 J1480 1,500 714.59 F112076 -21.83 573.35 J1474 1,500 726.88 F112076 -25.26 572.52 F114164 1,500 731.76 F112076 -66.26 463 58 FH03461 1.500 743.21 F112076 -29.64 572.52 F118250 1,500 744.12 F112076 -29.53 573.84 V100319 1,500 756.11 F112076 -32.75 574,01 J1470 1,500 769.78 F112076 -36.71 57359 F116329 1,500 774.97 F112076 -38.47 572.52 J1456 1,500 776.41 F112076 -38.89 572.52 FH03459 1.500 785.11 F112076 -41,40 572.52 11460 1.500 78S.82 F112076 -41.56 57470 F114163 1,500 791.70 F112076 -67.39 50858 FH02943 1,500 792.69 F112076 -43.37 572.52 F109618 11500 793.90 F112076 -44.00 57152 J2944 1,500 194.02 F112076 -44.03 572.52 FH10B30 1,500 794.50 F112076 -44.18 572.52 FH10829 1,500 795.05 F112076 -44.34 572.52 F109619 1.500 79925 F112076 -44.63 575.74 11484 1,500 804.29 F112076 -43.58 584,34 F105411 1,500 806.64 F105412 14.55 824.62 FH03501 1,500 810,33 F112076 -48,90 572,52 F107325 1,500 810,63 F112076 -47.80 576.47 /1016894 1,500 811.74 F112076 -49.32 572.52 F100834 1,500 81256 F112076 -49,52 572.52 1166 1,500 812.60 F112076 -49.58 572.52 J998 V100675 1,500 1,500 812.85 814.13 F112076 F112076 -49.66 -49.98 572.52 S7252 FH10836 1,500 814.72 F112076 -50.23 57252 FHO3205 1,500 815.10 F112076 -50.33 572,52 FH10827 1.500 815.74 F112076 -50.54 572.52 F105404 1,500 816.07 F112076 -50.64 572.52 F100894 1,500 817.53 F112076 -50.15 57559 F117167 1.500 81775 F112075 -49.86 576.76 F119440 1,500 818.84 F112076 -51.03 573,93 FHO3443 1,500 819.72 F112076 -51,74 S72.S2 FH03193 1,500 820.88 F112076 -52.08 572.52 J164 1,500 820.97 F112076 -52.12 572.52 FH10828 1,500 821.02 F112076 -52.14 572.52 FH02842 1,500 82199 F112076 -52.45 572.52 FH03202 1,500 82214 F112076 -52.46 572.52 /1016890 1,500 822.30 F112076 -52.51 572.52 F119437 1,500 822,38 F112076 -52.32 573,03 V100674 1,500 822,44 F112076 -52.49 572.52 F114116 _ 1,500 82381 F112076 -52.90 572.52 F100892 1,500 82384 F112076 -52,43 574.44 FH03191 1,500 825 11 F112076 -533S 572.52 Fire de ID' F114115 Target Fire Flow 1,500 Available Fire Flow @ 20 -psi at Fire Node 825,88 Fire Flow System Critical Node F112076 System Critical Node Pressure -53.56 Fire Node Flow o Maintain 10 Critical Node 572.52 FH03199 1,500 825,92 F112076 -53.61 572,52 FH03200 1,500 826.21 F112076 -53.69 572.52 FH03189 1,500 826.42 F112076 -53.78 572.52 F118193 1,500 82655 F112076 -53.41 573,81 F116974 1,500 827.88 F112076 -53.72 574.12 F116483 1,500 829.00 F112076 -53.38 576,28 V107891 1,500 829.40 F112076 -53.79 575.47 FH10835 1,500 829.95 F112076 -54.91 572.52 FH03198 1,500 830.18 F112076 -S494 572.52 F117073 1,500 830.25 F112076 -53.86 576.19 F100889 1,500 830.69 F112076 -54.83 573.11 F114124 1.500 830.82 F112076 -54,74 572.52 FH03190 1.500 830.93 F112076 -55.16 57252 FH10817 1,500 830.95 F112076 -55.09 572.52 J124 1,500 831-02 F112076 -52.14 582.45 F116418 1,500 93128 F112076 -55 16 572.52 F106064 1,500 831.42 F112076 -5490 574.04 F100893 1,500 831.42 F112076 -54.95 573.84 J2954 1,500 831.82 F112076 -55.33 572.52 F117309 1,500 831.91 F112076 -55.37 572.52 J154 1,500 _ 83389 F112076 -55.12 575.57 V111202 1,500 834.10 F112076 -56.06 572.52 V100673 1,500 834.19 F112076 -56.08 572.52 F117310 1,500 834.32 F112076 -55.53 574.66 11486 1,500 635.49 F112076 -56 51 572.93 J158 1,500 83565 F112076 _ -54.56 579.20 11490 1,500 835.80 F112076 -56.58 572.61 V111201 1,500 93836 F112076 -57.35 572.63 FH03748 1,500 838.77 F112076 -57.54 572.52 F116419 1,500 83912 F112076 -57.65 572,52 V100648 1,500 639.81 F112076 -57.81 572.52 F117307 1,500 84023 F112076 -57.41 574.21 1128 1,500 844.02 F112076 -56.60 581.07 F118271 1,500 845,05 F112076 -59.65 572.52 FH10832 1.500 845,43 F112076 -59.74 572.52 J140 1,500 645.90 F112076 -5852 576.77 F107275 1,500 646.71 F112076 -60.18 572,52 FH03186 1,500 846.99 F112076 -60.23 572.52 F117797 1,500 847.24 F112076 -58.82 577.32 V100645 1,500_ 648.85 F112076 -60.64 572.52 F106050 1,500 849,36 F112076 -57.93 582.26 F105403 1,500 849.48 F112076 -60.58 572.52 FH02845 1,500 849:81 F112076 -61.15 572.52 FH03195 1.500 850.60 F112076 -61.38 572.52 V108084 1,500 851.01 F112076 -61,53 572.52 V107928 1,500 651.70 F112076 -6106 574.71 FH03184 1.500 _ 852.59 F112076 -62.04 57252 F100890 1,500 852.65 F112076 -61.84 572.52 F116973 1.500 85297 F112076 -61.03 575.84 J114 1,500 853.56 F112076 -60.70 577.68 FH03180 1,500 854.49 F112076 -62.62 572.52 F100891 1,500 855.39 F112076 -60.51 58000 FH03182 1,500 856.33 F112076 -63.24 572.52 `100885 1,500 857.36 F105412 2.17 824..78 J146 1,500 858.06 `112076 -60,54 582.61 J120 1,500 858.06 F112076 -61.17 580.69 F111440 1,500 862 91 F112076 -64.73 573.87 , Fire de ID FH10823 Target Fire Flow 1,500 Available Fire Flow @ 20 -psi at Fire Node 86316 Fire Flow System CritIcal Node F112076 System Critical Node Pressure -65.19 Fire Nod. Flow o Maintain 10 Critical Node 572.52 J136 1.500 863.50 F112076 -61.45 585.21 F116532 1.500 864.16 F112076 -64.78 575.44 FH10834 1,500 864.82 F112076 -66.02 572.52 F116533 1,500_ 866.90 F112076 -64.95 577.70 F107151 1.500 870.29 F112076 -66.00 578.05 FH03187 1,500 870.86 F112076 -67.93 572.52 FH10814 1.500 874.43 F112076 -68.82 S72.52 F110659 1,500 8770H F112076 -69,69 572.52 1132 1,500 878.93 F112076 -67.34 582,49 F114125 1,500 887,24 F112076 -73-05 572.52 F116046 1,500 888.66 1`112076 -73.17 573.72 F114159 1,500 894.15 F1DS412 9.27 887,10 1`105117 1,500 90730 F112076 -79.75 572.52 V109571 1,500 913.91 F112076 -82.03 572.52 F114129 1.500 932,99 F112076 -88.37 572.52 F114130 1,500 973.12 F112076 -103.82 572.73 F114162 1500 983.14 F105412 17.16 1,018.40 F110507 1,500 998.96 F112076 -113.65 572.52 F114136 1,500 1,070.19 F112076 -77.26 68399 F114137 1,500 1,073.50 F112076 -98.62 642.81 F115097 1,500 1,193.31 F112076 -83.91 74389 F100873 1,500 1,200.06 F112076 -8.12 1,046.13 F114135 1,500 1,248,60 F112076 -77.98 794.55 F109099 1,500 1,258,96 F109151 5.41 1,072.02 F109D98 1,500 1,289.12 F109151 4.55 1,071.62 F110500 1,500 1,339.98 1`109151 3.05 1,073.49 FHO2947 1,500 1,343.10 F109151 2.92 1,072.36 F115D06 1,500 1,360.34 F112076 .77.34 864.51 F100B66 1.500 1,363.32 F112076 -78.03 86407 F1D3829 1,500 1.377.49 F112076 -76.56 87S.15 F114141 1500 1,381,15 1`112076 -46.48 987.06 F100878 1,500 1,392,81 F112076 -49.40 983.49 F100897 1,500 1,415.78 F112076 _ -61.41 952.36 F109093 1,500 1.430.92 F109151 0.14 1,072.05 F100874 1,500 1,436.50 F112076 -46.43 1,023.84 FHO2949 1.500 1,437.66 F109151 -0.08 1,071.62 F109104 1,500_ 1,440.94 F109151 -0.13 1,071.49 F100871 1,500 1,449.83 F112076 -72.71 932.45 F109096 1.500 1.459.91 F109151 -0.82 1,071.62 F100876 1,500 1;460.41 F112076 -44.50 1,045.11 F100877 1,500 1,46192 F112076 -44.48 1,047.06 FH02949 1,500 1.469.14 F112076 -44.41 1,052.13 F109112 1,500 1,488.56 F109151 1.73 1,071.86 F109106 1,500 1,495.56 F109151 -2.00 1,072.22 n re LL N Z n 17 £sE z w rV Q L N O > T Z S Z cc =) O � a r4 Lq _ o — w w o m Cl- H n a � X Q w r O g o a Z r1 C)0 Ur w rr LL O- + Z o o Q } o ~ J O O _ tr • U d O v7 - a 1 00 C r MlrI 1S t—dwpgy i mj,Q i Rd r � � TABLE C2.1 Phase I Primary Pressure Plane Fire Flow Results (2017 - 2022) Fayetteville Water Master Plan Fire de ,� F111751 Target Fire Flow 1,500 Available Fire Flow @ 20-psiO at Fire Node -0.10 Fire Flow Critical Node F111751 SystemFlow Pressure 13,89 Fire Node o Maintain Critical Node 7,474.05 F105909 1,500 0.25 F105909 18.34 77055 F117382 1.500 1.03 F117382 18.11 2,972.88 F116411 1,500 1.86 J2258 8.92 731.63 F107071 1.500 2.16 F107071 18.00 3,72292 F101489 1,500 58.88 F101489 20.00 65.37 F100432 1,500 112.56 12258 8,92 117.40 12130 1,500 158.11 J2258 892 165.98 F114984_ 1.500 198.17 F114S57 14.32 203.88 J2008 1,500 209.85 J2008 20.00 233.09 FlIS205 1,500 249.62 J2008 3.94 236.12 F1142_43 1.500 302.93 12008 -20.10 238.89 F114459 1,500 353.87 F114459 20.00 396.30 F102172 1,500 362.45 12008 -47.02 245.96 F112151 1,500 365.31 F116411 14.44 911.54 F115207 1,500 380.64 J2008 -57..24 244.99 F116398 1,500 385.49 F114459 13.96 401.45 F115208 1,50D 397.02 12008 -62.69 249.86 V103375 1.500 405.95 J2008 -65.27 251.69 F104061 1,500 409.72 1`114459 6 59 395.47 F103859 1,500 410.46 F105427 12.61 418.72 F100904 1,500 413.80 F105427 11.99 42009 F102174 1,500 416.91 J2008 -66.06 2S7.30 F114228 1,500 418.68 J2008 -66.65 257.72 F114227 1,500 419.95 J2008 -67.53 257.52 FH03420 1,500 421.20 J2008 -6798 257.75 F102119 1,500 421,98 J2009 -68.33 257.87 F102919 11500 423.48 12008 -69.13 257.91 F100837 1,500 433.25 F105427 5.38 418.92 1`104062 1,500 434.66 F114459 8.39 427.28 F104802 1,500 450,81 J2008 -53.18 296.32 F115209 1,500 456.76 J2008 -6800 280.21 F105497 1,500 462.64 F114459 -1.23 415.80 F105981 1,500 463.33 F105981 2000 746.48 F104063 1,500 475,84 F114459 -2.53 422.37 F114242 1,500 476.13 J2008 -71.57 306.23 F104801 11500 482.37 12008 -62.88 303.60 F101456 1,500 483.23 F105427 -8.56 426.66 F102990 1,500 496.30 12008 -47.43 337.63 F101534 1.500 504.81 F105576 6.61 479.28 F102604 1.500 505.65 J2008 -50.46 337.55 F116817 1.500 508.78 F113714 1621 539,95 1`101179 1,500 513.39 J2008 -5127 3_41.35 F101178 1,500 515.88 12008 -54.77 33732 F114236 1,500 529.40 J2008 -67.73 326.60 F116953 1,500 530.10 F116953 20.00 595.12 F101183 1,500 531.47 F114459 -19.17 416.06 F115769 1,500 531.87 F105576 5.03 493.53 F106048 1,500 532.43 F105427 -22.05 435.73 F101180 1,500 532.88 12008 -51.71 354.16 J2348 1,500 532.95 F105576 6.65 507.65 F101182 1,500 533.37 12008 -20.81 421.10 1`104064 1,500 539,55 F114459 -1538 433.15 Fire de ,� F101181 Target Fire Flow 1,500 Available Fire Flow @ 0. at Fire Node 549.83 Fire Flow Critical Node 12008 System PreSSLITe -42.82 Fire Node Flow to Maintain , Critical Node 382.44 F10S498 1.500 553.04 F1144S9 -25.56 414.73 F114460 1.500 561-99 12008 -38.35 400.49 F1014SS 1.500 577,52 F105427 -34.53 444.14 1`118150 1,SOD 585.35 F105427 -3573 447.73 F103621 1,500 594.13 F103621 20.00 619.63 F112564 1.500 606.75 F112564 20.00 747.41 F101184 1,500 612.99 F114459 -42,43 417.21 J842 1,500 614.82 1842 20.00 782.70 F116622 1.500 615.56 F112S64 19.44 747.56 V110776 1,500 615.59 F112564 1944. 747.58 '112566 1.500 615.68 F112564 19.44 747.66 F112567 1.500 621.24 F112564 19.08 747.65 F119164 1,500 621.36 F112564 19.08 1 _747 79 F112569 1.500 632.14 F112564 18.53 750.16 F113954 1,500 632.64 F105427 -39,28 475.86 F101185 1,500 633,18 F114459 -4874 416,91 F115063 1.500 633.22 F114459 -38.70 438.36 F105494 1,500 634.54 F105494 20.00 815.68 F108965 1,500 640.94 F105427 -34.68 492,03 F113309 1.500 645.51 F105578 -4.52 504.44 F113376 1,500 647.71 F112564 19.25 782.47 F101454 1,500 656.60 FlOS427 -35.21 502.84 F119212 1,500 668.95 F119212 20.00 729.72 F101533 1.500 670,19 FlOS579 -7.35 504.13 F101186 1,500 69971 F114459 -55.05 438.67 F102740 1,500 695.03 F115178 -30.87 415.00 J944 1,SOO 696,18 F115178 -30.98 415.51 F103762 1,50D 720.48 F103762 2000. 764.77 F104224 1,500 724,21 F105427 -44.72 531.18 F113695 1,500 729.33 F113685 20,00 859.44 12300 1,500 734.13 J2300 20.00 835.79 F113684 1.500 739.80 F113694 20.00 868.56 F112928 1,500 746.78 F112927 2.90 655.99 V111364 1,500 750.73 V111365 10.62 753.56 1`104068 1,500 768.18 F114459 -62.85 472.43 F113028 1,500_ 769.31 F113029 20.00 931.39 V107887 1,500 77245 V107887 20.00 950.39 F101460 1,500 783.38 1`105578 -7.93 583.64 F113952 1,500 789.48 F105427 -49,52 567.02 F101187 1,500 813.73 F1144S9 -66.53 49330 F110315 1,500 F112927 -3.84 655.99 F100743 1,500 _823.69 833.30 F115178 -56.53 416.64 F105598 1,500 847.68 F114459 5.29 810.23 F101458 1.500 851.43 F105427 -48.07 614.75 F116524 1,500 851.71 F112927 -6.38 656.30 V109941 1,500 8S799 F112927 -6.99 655.99 F114626 1,500_ 86S79 F114626 20.00 1,014.27 F114457 1,500 869.26 F114459 2,61 811.07 F117861 1.500 875.11 12258 8.91 918.10 F112511 1,500 879.70 F112511 20.00 991.63 F104069 1,500 887.73 1`114459 -68.28 535.86 F102785 1,500 893.50 F105282 2.34 843.50 Fire de .� V108940 Fire Flow 1,500 Avallable Fire Flow @ 20 -psi at Fire Node 893.68 Fire Flow System Critical Node F112927 System Critical Node Pressure -10.39 Fire Node Flow Maintain 1 , oTarget Critical Node 655,99 FH14189 1.500 898.77 FH14189 20.00 1,137,06 F116394 1,500 899.04 F116394 20.00 1.142.10 F106926 1,500 9D4-80 F105292 2.46 BS4-95 _ F115860 LSDO 909.93_ J22S8 891 952.74 F110728 1,SOO 920.95 F113866 1787 959.88 F115872 1,500 928.14 F117326 17.67 1.095.44 FH11458 1,500 928.21 F105427 _ -46.33 _ 674.47 F113867 1,500 933.31 F113866 17.05 968.46 V10147S 1,500 933 39 F103762 20.00 991.48 F1D9632 1,500 941.09 F109632 20.00 976.62 J3028 1,500 950.94 F100244 15.62 999.14 V100679 1.500 963.10 V100679 20.00 1,010.06 F109902 1,500 963.47 F108902 20.00 999-89 F102812 1,500 963.60 F105427 -50.10 688.89 F113542 1,500 965,84 F105282 6.32 938.72 F106142 1,500 965.90 F114453 16,12 1,014,80 F113412 1.SOO 968-35 F115178 -63.99 462.47 F105719 1,500 968.68 F105719 20.00 1,076.85 J1616 1,500 969,24 F108674 13.16 1,019.34 F101189 1,500 974.74 F114459 -72.18 580.54 F115223 1,500 976.85 F1144S9 -12.06 810-90 V100678 1,500 979.45 V100678 20,00 1,035.52 F102813 1,500 989,98 F105427 -51.72 702.74 F104314 1.500 99472 F114459 -69.31 GDD-57 F113866 1,500 996.03 F113866 20.00 1,042,35 F104580 LSOO 997.10 F104580 20.00 1,043.30 F111916 1,500 1,000.45 F108674 8.79 982-67 F111915 1,500 1,005.60 F108674 9109 992.18 F111914 1,500 1,008.80 F108674 9.09 995.31 F106445 1,500 1,O1L4S F106445 20.00 1,065.63 F112453 1,500 1,013.51 J2300 11.69 1,034.38 F114834 1,500 1,033.75 F112927 -4.78 812.83 F112986 1,500 1,035.35 F114012 -2.54 982.40 FH14341 1,500 1,040,76 F108674 9.71 1,036.31 V102900 1,500 1,043.77 F113700 18.50 1.105.49 F114458 1,500 1,057..59 1`114459 -23,99 810.30 F100255 1,500 1,058.16 1`100244 9.95 1,057.17 V107888 1,500 1,059.42 V107887 9.88 1,056.94 F106331 1,500 1,063-67 F106331 20.00 1,191.94 F104228 1,500 1.064.01 F105427 _ -37.29 803.36 11528 1.500 1,070.85 F105427 -24.92 858.72 J1526 1.500 1,076.38 F105427 -25.91 858.72 F117419 1,500 1;076.74 J2258 8.91 1,106,11 F107281 1,500 1.07793 F105427 -26.19 858.72 11620 1,500 1,07817 F108674 8.21 1,050.04 V102777 1,500 1,084.87 F115279 -29,06 759.20 F118218 LS00 1,087.35 J2258 8.91 1,143.00 F102599 1.500 1,095.74 F102599 20-00 1,212.40 1`1`111291 1,500 1,098.50 FH11291 20.00 1,168.19 1`100262 1.500 1,100.76 12258 8.91 1,165.49 J1628 1,500 1,102.68 F108674 11.27 1,124.28 1`102716 1,500 1,108.67 12258 8.91 1,145.23 Fire • , F110313 Target 1,500 Available Fire Flow @ 1 • 1,110.32 Fire Flow l Node , F110313 System Pressure 20.00 Fire Node Flow Maintain • 10-psi Critical Node 1,162.96 V110931 1,500 1,113.20 V110931 20.00 U48.33 V109028 1500 1.114.66 V109028 20.00 1,16772 F110314 1,500 1.114.95 V109028 20.00 1.168.02 F115184 1,SOD 1,116.11 F115184 20.00 1,179.10 F118032 1,500 1,117.10 F119032 20.00 1,170.37 F116576 1,500 1,118.51 F116576 20.00 1,190.90 FH02342 1,500 1.118.87 FHO2342 20.00 1.191.85 F117424 1,500 1,120.66 J2258 8.91 1,173.24 F113697 1,500 1,126.76 F113697 20.00 1,272.49 F105718 1,500 1,127.55 F105718 20.00 1,220.04 F117200 1,500 1,135.43 12258 8.91 1,192.07 F104579 1,50D 1.136.17 F104579 20.00 1,190.62 F113377 1,500 1,143.04 F112564 -8.07 893.40 F101581 1,500 11150.21 F114459 -66.61 705.94 F1133S9 1.500 1.151.05 F113361 17,85 1,203.78 F105489 1,500 1,152.95 F105489 20.00 1,207.24 _ F115917 1,500 1,157.18 J2258 8.91 1,214.96 F117862 1.500 1.157.22 J2258 8.91 1,185.98 V102893 1,500 1,157.47 V102893 20,.00 1.233.34 V101487 1,500 1,169.28 F113478 19.32 1,224.26 F104137 1,500 1,175.81 F105427 -24.47 943.99 V102947 1,500 1,176,98 V102947 20.00 1,250.00 F109602 1,500 1,17915 F109602 20.00 1,293.77 FH02344 1.500 1,182.38 FH02342 16.59 1,23182 FH03753 1,SOD 1,182.43 FH03753 20. DD 1,22857 F102344 1,500 1.182.88 F102344 20.00 1.332.12 F118055 1,500 1,18S.1S F118055 20.DO 1,245.41 F112446 1,500 1,185.24 F112456 11.51 1,207.40 F107828 1,500 1,185.81 F117327 18.00 1.426.98 F113411 1,500 1,188.22 F11S178 70.21 545.29 FH11294 1.500 1,190.58 F112456 12.53 1,228.42 F112451 1,500 1,195.35 11826 12.21 1,229.35 F112443 1,500 1.196.95 F112456 11.65 1.221.49 J1824 1,500 1,198.52 FH11291 15.89 1,241.79 F1159S9 1,500 1,199.15 F115959 20.00 1,289.56 F112450 1,500 1,199.84 J1826 12,21 1,23403 F112243 1,500 1,204.22 J2258 8.91 1.248.81 F107017 1,500 1,205.98 F107017 20.00 1,262.30 F112448 1,500 1,209.00 11826 12.22 1,242-57 FH10579 1,500 1,209.30 F107017 20.00 1,265.90 F113928 1,500 1,209.99 FlOS238 12.03 1,323.41 F109605 1.500 1,210.13 F109605 20.00 1,314.98 F107125 1.500 1,210.41 F107125 20.00 1,313.03 F108263 1,500 1,211.24 F113981 16.92 1,405.13 F117178 1,500 1.211.78 F116576 13.35 1,236.61 F101405 1,500 1,211.88 F101405 20.00 1,411.58 V106064 1.500 1,213.07 F105282 -5.33 1,087.05 F116556 1,SO0 1,213.64 1 12258 8.91 1,256.08 12072 1,500 1,216.39 J2072 20.00 1,374.93 V107490 1,500 1,216.78 F109605 19.20 1,313.01 V1044S5 1,500 1,216.85 F105592 18.91 1,261.89 F108260 1,500 1,218.30 F117327 .1 1,426.98 Fire de to� F115180 Target Fire Flow 1,500 Available Fire Flow C. 20-psi at Fire Node 1,219.96 Fire Flow System Critical Node F105282 System Critical Node Pressure -5.33 Fire Node Flow toMaintain Critical Node 1,093.22 F1079S2 1,500 1,221,04 F105282 -5.33 1,094.19 F115910 1,500 1,223,73 J2259 891 1,282.25 J1822 1.500 1,225 OB FH11291 12.18 1,240.99 F109604 1500 1,226.51 F109602 17.84 1.317.39 FH12246 ! 1,50D 1,227.52 V101008 19.00 1,263.94 F112447 1.500 1.227.84 F105578 10.68 1,246.52 F106141 1,500 1,22617 F114453 4 08 1,174.86 FlOB381 1.500 1,228.56 V101008 18.41 1,262.51 F107860 1.500 1,228.94 J2258 8.91 1.272.35 F104703 1,500 1,229.99 F105578 10.63 1,247.43 F108379 1,500 1,235.53 F102716 15.67 1,258.30 FH10324 1,500 1,235.99 F105278 18.74 1.316,20 F116044 1,500 1,239.44 12258 8.91 1,302.11 V102172 MOD 1,240.32 V102172 20.00 1,389.45 J2320 1,500 1,242.34 J2320 20.DO 1,351 03 F113686 1,500 1,24317 F113686 20-00 1,465.02 F107049 1.500 1,245.01 F107048 20.00 1.32826 J2318 1,500 1,249.63 J2318 20.00 1,348.22 F_H02345 1,500 1,25236 F105578 979 1,246.44 J94 1.500 1.253.02 J94 20.00 1,520.39 F106441 1,500 1,253.54 J225S 891 1.308,74 F100245 1,500 1,253.58 F100244 1.37 1,169.55 F113982 1,500 1.255.49 F113981 16.10 1,418.93 F115859 1.500 1,257.99 J2258 6.91 1,295.48 F101917 1,500 1,256.25 F117327 15,72 1,426.98 F112223 1.500 1.265.19 12258 891 1,322.03 F114621 1.500 1,268.33 F114621 20.00 1,446.2E F101572 1,500 1,26B.97 F114459 -58.32 810.23 F101714 1,500 1,269.33 F101714 20.00 1,330.51 F103945 1,500 1,269.41 F103945 20.00 1,333.39 V100193 1,500 1,270.27 V100193 20.00 1,33052 V100092 _ 1,500 1,271.59 V100092 20.00 1,349.96 F118O90 _ _ 1,500 1,272.51 J2258 8.91 1,336.68 F113312 1.500 1,274.61 F105578 -36.89 705,56 FH02384 _ 1,500 1,275.19 F105578 8.95 1,246.44 F106693 1,500 1,281-64 F117327 1496 1,426.98 F116552 1,500 1,284.08 J2258 8.91 1,317.17 _ F103888 1,500 1,288.74 J2258 &91 1,354.33 F105438 1,500 1,291.42 J2258 8.91 1,338.35 F112879 1,500 1,292.30 F118055 16.29 1,332.53 J1570 1,500 1,292.81 FHO3753 18.79 1,336.92 FH14563 1,500 1,300.60 F108674 -1.98 1,110.18 F108261 1,500 1,301.45 F117327 14.31 1,426.98 F104315 1,500 1,30276 F114459 -52.80 854.97 F115271 1,500 1,305.42 F115271 20.00 1,359.15 F113683 1.500 1.305.67 F113685 19-22 1.518.42 J58 1.500 1,306.88 _ F118055 14.43 1,335.09 F101918 1,500 1,309.71 F117327 14.18 1,431.85 F106694 1,500 1,311.55 F117327 13-97 1,426.98 F115861 1,500 1.315.42 12258 8.91 1,379.22 F114625 1,500 1,317-85 F114625 20.00 1,551.19 F109601 1.500 1,320.58 F109602 14.54 1,374.97 Fire de .' F113320 Target Fire Flow 1,500 Available Fire Flow @ �. at Fire Node 1,326.69 Fire Flow Critical Node F105578 System Pressure 7,04 Fire Node Flow Maintain ' o, Critical Node 1,246.89 F113497 1,500 1,329.15 F113497 20,00 1,397.70 V103618 1,500 1,32934 V103618 2000 1,447.69 F100452 1,500 1,331,73 F108674 -2.36 1,132.12 F113329 1,500 1,33180 F105579 6.84 1,246.66 _ F106134 1,500 1,339.46 12320 19.16 1,445.97 F101399 1,500 1,33959 F101399 20-00 1,534.31_ F115889 1,500 1,340.12 F105578 6 75 1.252.72 F100763 1,500 1,344.32 F113471 -6.64 1,221.49 F102648 1,500 1,355.58 F115092 _ 5.50 1,297.72 F113331 1,500 1.356.31 F105578 5.92 1.247.10 F100257 1,500 1,356.73 F115092 5.50 1,298.82 FH10278 1,500 1,356.75 F115092 5.86 1,303.45 F102687 1,500 1,358.57 12318 17-88 1,44120 F107459 1,500 1,359-91 F107459 20.00 1,422.18 F100286 1.500 1,361,16 F107125 17.61 1,446.87 11624 1,500 1,363-80 F108674 -510 1,124.28 F101400 1,500 1,365.35 F101400 20.00 1,565,24 FH03751 1.500 1,366.03 F105238 5.81 1,142.72 F101397 1,500 1.372.50 F114625 1931 1,605.93 F103190 1,500 1,372.59 F115092 6.10 1,321.42 F100246 1.500 1,376.56 F108674 1.17 _ 1,219.35 V106502 1,500 1,379-51 V106502 20.00 1,442.65 FH03916 L500 1,380.25 FH03916 2000 1,510.00 F117207 1,50D 1,381.77 12258 8.91 1,451,08 V101257 1,50D 1,382.58 F115178 1.01 1,15985 F113894 1,501) 1.38459 F113894 20.00 1,441,64 V10802_1 1,500 1,387.34 V108021 20,00 1,474.19 F116554 1,500 1,387.79 12258 8.91 1,427.96 FlD0761 1,500 1,390.34 F105389 15.03 1.42208 V110933 1,500 1,390,80 J2258 8.91 1,455.00 F105991 1,500 1,392.30 F105578 4,51 1,246.81 F112822 1,500 1,392,42 F112822 20.00 1,588.10 F109793 1,500 1,392.46 1 F105578 4.52 1,247.25 F108264 1.500 1,393.04 12258 8.90 --- F102745 1,500 1,395.37 F103762 20.00 1,483.34 F105273 1,500 1,397.15 12258 891 1,463.55 F100759 1.500 1.397-82 F103762 20.00 1,485.99 F102901 1,500 1,401.00 F102901 20.00 1,738.36 F106144 1,500 1,403.22 J2258 8.91 1,48237 F101818 1,500 1,407.24 F114431 1833 1,538,01 J1626 1,500 1,413.72 F108674 -7.38 1,137.43 F107476 1,500 1,415.87 F107476 20.00 1,488,58 V10S664 1,500 1,416.44 V105664 20.00 1,488.94 F108013 1,500 1,417,47 F100262 15.89 1,465.77 F116584 1.500 1,422.86 J2258 8.91 F105564 1,500 1,423.37 F105564 20:00 1,547.93 F113543 1,500 1,432.36 F105282 -11.89 1,232.17 F108254 1,500 1,433.13 F117327 9.29 _ 1,413.48 E114032 1,500 1,435.46 12258 8.91 1,48704 F116919 1.500 1,43573 F116919 20,00 1,509.60 F113979 1,500 1,437.72 F117327 11.95 1,495.80 V100388 1,500 1,438.33 J225B 8.91 .-- Fire de �' F109598 Target Fire Flow 1,500 Available Fire Flow @ ,, at Fire Node 1440.76 Fire Flow Critical Node F109602 System „ Pressure 9.88 Fire Node Flow � Maintain , CrItical Node 1,439.29 F100093 1,500 1,440.97 12258 8.91 1,483.20 F107884 1,500 1,442.76 12258 8.91 F103351 1,500 1,445.14 F115178 9.81 1,438.76 FH03157 1,500 1,448.15 FH03157 20.DO 1.520.28 F114989 1;500. 1,448.23 F114988 20,00 1,545,49 1`116006 1,500 1,449.00 1 F119006 20.00 1,523.39 F106698 1,500 1,449,62 F117327 11.55 1,495.80 F107676 1.500 1,449.96 F107676 20.00 1,612.74 F106132 1,500 1,450.29 F107125 12.34 1,476.87 V107750 1,500 1,450.56 V108021 17.95 1,521.11 F1D4698 1,500 1,451.01 F105578 2,18 1,246.52 V110553 1,500 1,451.54 V11OSS3 20.00 1,520.52 F10S706 1500 1,452.92 F105706 20.00 1,515.44 F108257 1,500 1454-12 F117327 8.40 1,410.34 F101916 1,50D 1,454.40 F117327 11.05 1.485.32 F108S11 1,500 1,456.02 F117327 10,25 1,463.17 FH03153 1,500 1,458:39 FH03153 20.00 1,529.83 F118237 1,500 1,461.39 F118237 20.00 1.551.11 F117882 1,500 1,461,58 F117882 20,00 1,675.86 F106913 1,500 1.462.15 F113497 17.76 1,519,84 V100510 1,500 1.463,44 V100510 20.00 1.550.75 F115091 1,500 1,464.75 F117327 11.05 1,495 80 F110528 1,500 1,465.55 FH03916 15.20 1,533.00 F102768 1,500 1,465.61 12258 8.91 1,494,63 1354 1,SD0 1,465.91 V108021 18.61 1,544.OS J460 1,500 1,466.30 FH03916 15.45 1,S37.D7 V107748 1,500 1,467.05 12258 8.91 •.. V107746 1,500 1,467.87 V108021 16.21 1,523.24 V105137 1.500 1.469.15 V105137 20.00 1,545.74 F106980 1,500 1.469.45 F106980 20.00 1,546.05 F103397 1,500 1,469.86 J2320 12.32 1,497.23 V108020 1,500 1,470.00 F116919 18.38 1,532.91 V101280 1,500 1,472,21 V101280 20.00 1,537.38 11074 1,500 1,473.53 J1074 2000 1,546.11 V109271 1,500 1,474.92 FH03916 15.58 1.547.95 V106SO1 1,500 1.475.03 V106501 20,00 1,542,79 F110400 1,500 1,476.60 F110400 20.00 1 1,695.80 F112252 1,500 1,479.14 _ J2258 8.91 -- F104994 1,500 1,48288 F104994 20.00 1,695.42 F113410 1.500 1.483.56 F115178 -73.62 663.88 F105221 1,500 1,485.60 F105221 20.00 1,579.84 1346 1,500 1,486.58 V108021 18.77 1,567.45 F106436 1,500 1,488.93 F106436 20.00 1,560.20 F102312 1,500 1,490.57 F114851 7.88 1,462-90 1348 1.500 1,492.48 V108021 18.21 1,568.07 F105723 1,500 1,49166 V103604 17.97 1,738.36 1`102484 1,500 1,493,86 F102484 20.00 1,565.35 11070 1,500 1,497,63 FIi03157 19.14 156534 J1922 1,500 1,498.16 F110400 19.65 1,709.28 F115320 1,500 1,498.17 J2258 8.91 ••- F100430 1,500 1,499.24 J2258 8.91 F118169 1,500 1,499.94 V108021 1712 1,566.29 '71e v m a' of er 'i Hilldale r e o � c w Y � rt rt �^ aWn�Fi�Qyst w �e G� ti rry �9 3� ow U Z z E Wi Gc� r LEGEND E ro C= CITY LIMITS PLANNING BOUNDARY a 0-500 GPM 4` 0 500-1000 GPM 0 1000-1500 GPM • 1,500+ GPM c Ni c 2022 TOWNSHIP tar w r PRESSURE PLANE Map Source: City of Fayettcvillc GIS E Ade FIRE FLOW ANALYSIS Data Source: InFoW'aler Hydraulic Model EXHIBIT C2.2 TABLE C2.2 Phase I Township Pressure Plane Fire Flow Results (2017 - 2022) Fayetteville Water Master Plan Fire Node ID F106404 Target Fire Flow .. 1,500 Fire Flow at Fire Node .. 1,265.02 Available Fire -Flow Critical Node . F106404 System .. Pressure 20.00 Fire .. Flow to Maintain Critical Node .. 1,375.30 F112924 1,500 1,287.88 F112924 20.00 1,513.59 F106407 1,500 1,520.79 F106407 20.00 1,833.32 F100093 1,500 1,541.31 F112924 19.90 1,810.74 J3280 1,500 1,581.41 13280 20.00 1,873.80 V108165 1,500 1,589.45 V108165 20.00 1,800.53 F106402 1,500 1,672.26 F106402 20.00 1,810.75 F107715 1,500 1,685.55 F106404 16.62 11779.70 F102290 1,500 1,720.20 F102290 20.00 1,955.69 F115015 1,500 1,728.87 F106407 17.55 1,999.80 FHO2198 1,500 1,892.16 F106407 12.71 1,984.82 V100262 1,500 1,940.24 V100262 20.00 2,111.25 F106406 1,500 1,980.47 F106407 13.64 2,114.24 F108212 1,500 2,077.88 F108212 20.00 2,293.72 J790 1,500 2,149.65 V108165 13.07 2,222.04 FH11960 1,500 2,172.78 FH11960 20.00 2,296.05 V106209 1,500 2,173.53 F114817 -3.41 1,934.66 FH11961 1,500 2,186.89 FH11961 20.00 2,332.31 F102287 1,500 2,208.77 FH11961 19.52 2,346.68 F108209 1,500 2,213.83 F114817 16.16 2,364.55 FH10097 1,500 2,306.54 J3280 3.34 2,108.04 F102310 1,500 2,363.93 F102310 20.00 2,535.19 F110614 1,500 2,370.07 1`106407 8.14 2,297.21 FH03942 1,500 2,409.20 FH03942 20.00 2,582.92 J2114 1,500 2,420.30 FH03942 19.43 2,583.77 F112327 1,500 2,453.34 F106407 6.96 2,333.77 F112337 1,500 2,689.53 V108165 17.11 2,944.81 F112339 1,500 2,699.90 V108165 16.78 2,942.12 F112344 1,500 2,873.32 F106407 -3.15 2,376.75 F112335 1,500 2,878.10 V108165 10.31 2,885.17 F112331 1,500 3,377.04 F106407 1.68 T 2,970.08 S Askew Dr �G g \l Ravenswood L G L Orb' u d m C m V) Q ri o; r LEGEND CITY LIMITS PLANNING BOUNDARY 0-500 GPM 0 500-1000 GPM ® 1000-1500 GPM * 1,500+ GPM NI 2022 SOUTH MOUNTAIN PRESSURE PLANE Map Source: City of Fayetteville GIS FIRE FLOW ANALYSIS Data Source: InfoWater Hydraulic Model EXHIBIT C2.3 TABLE C2.3 Phase I South Mountain Pressure Plane Fire Flow Results (2017 -2022) Fayetteville Water Master Plan Fire Node ID V106075 Target Fire Flow .p 1,500 Available Fire Flow @ 20 -psi at Fire Node.. .. 1,194.69 Fire Flow System Critical . V106075 System ..• 20.00 Fire .. Flow to Maintain 1 O. .. .. 1,241.60 F106202 1,500 1,204.68 F106202 20.00 1,263.81 F100545 1,500 1,227.38 F100545 20.00 1,288.91 F100542 1,500 1,230.30 F100542 20.00 1,289.24 FH10465 1,500 1,247.80 FH10465 20.00 1,297.91 F100544 1,500 1,249.19 F100544 20.00 1,308.18 FH10468 1,500 1,254.37 F100544 18.58 1,304.64 F100543 1,500 1,268.90 F106202 19.12 1,326.35 F106024 1,500 1,275.04 F100544 15.17 1,305.41 F108614 1,500 1,280.61 F100544 14.11 1,304.71 F108596 1,500 1,281.54 F100544 14.07 1,305.41 F108597 1,500 1,284.44 F100544 13.54 1,305.17 F108615 1,500 1,291.49 F100544 12.26 1,304.71 F105313 1,500 1,298.99 F105313 20.00 1,356.90 F100520 1,500 1,311.18 F100544 9.54 1,308.48 F113395 1,500 1,322.98 F100545 15.12 1,356.68 F100541 1,500 1,332.76 F106202 14.53 1,362.34 F107964 1,500 1,339.55 F105311 14.43 1,366.80 F102485 1,500 1,456.13 F106202 5.55 1,425.43 F107965 1,500 1,490.68 F105311 9.96 1,490.39 FH10460 1,500 1,496.33 F106202 8.85 1,487.79 F116098 1,500 1,496.99 F106202 14.88 1,534.95 FH10409 1,500 1,498.03 F100545 12.12 1,514.45 F107971 1,500 1,498.31 F100545 10.98 1,505.85 F107968 1,500 1,499.61 F100545 12.20 1,516.64 F100546 1,500 1,501.44 F106202 8.12 1,487.56 F100504 1,500 1,509.67 F100545 13.98 1,541.29 F113397 1,500 1,512.93 F100545 9.01 1,505.32 FH10410 1,500 1,519.57 F106202 13.09 1,543.93 F100502 1,500 1,522.22 F100545 11.27 1,532.21 F106025 1,500 1,541.55 F100545 9.33 1,536.30 F100507 1,500 1,566.26 F100545 0.61 1,495.74 F103503 1,500 1,569.24 F100545 5.93 1,537.21 F100506 1,500 1,601.04 F100545 -2.32 1,507.56 F100503 1,500 1,607.97 F100545 1.28 1,539.44 F100505 1,500 1,644.42 F100545 -4.82 1,529.92 F102482 1,500 1,719.94 F100545 -12.35 1,545.14 F103488 1,500 1,778.38 F100545 -16.61 1,566.58 F100377 1,500 1,810.35 F100545 -14.94 1,604.60 vI C�eeK SUb�ett 0 z w uj w J Y A Z O � a m a =w to 0 aQ N a=aH _m l7 w j_ i`A! �Qaae3S FN_—l7 l7 0� N mwX r ! Za O vCi O CL LU W r� JZ 0 +N LL ! Z 027 O r r 1 ~ J 0 O p 1 - -__ V a o ui 1 I '. 00 (go 1 -------------------------- I I Ln L d N ! N P�l�'R(J55C�J� PH TABLE C2.4 Phase I Mt. Sequoyah Pressure Plane Fire Flow Results (2017 - 2022) Fayetteville Water Master Plan Fire Node F108266 Target Fire Flow 1,500 Available Fire Flow . at Fire Node .. 1,100.80 Fire Flow Critical Node . F108266 System .. Pressure 20.00 Fire .. Flow to Maintain . Critical Node .. 1,226.65 F105561 1,500 1,165.06 F105561 20.00 1,383.07 F102952 1,500 1,245.64 F102952 20.00 1,289.71 F106332 1,500 1,282.61 F106332 20.00 1,329.22 F113296 1,500 1,304.80 F113297 20.00 1,426.10 F110486 1,500 1,312.80 F110486 20.00 1,360.94 J2092 1,500 1,314.36 J2092 20.00 11499.31 F104458 1,500 1,323.94 F104458 20.00 1,420.75 11584 1,500 1,327.27 J1584 20.00 1,380.77 F101751 1,500 1,339.30 F101751 20.00 1,600.45 F102570 1,500 1,351.33 F114411 12.75 1,373.28 FH02377 1,500 1,366.13 FH02377 20.00 1,427.14 1`111800 1,500 1,368.87 F111800 20.00 1,456.14 F107311 1,500 1,405.73 F107311 20.00 1,454.97 F104971 1,500 1,406.67 F110486 14.80 1,432.22 F114413 1,500 1,408.37 F114413 20.00 1,583.89 F106328 1,500 1,432.20 V102658 0.30 1,362.19 F118549 1,500 1,460.71 F118549 20.00 1,559.52 F113971 1,500 1,481.99 F113971 20.00 1,578.41 F112375 1,500 1,487.01 F112375 20.00 1,619.48 F118515 1,500 1,489.42 F118549 17.92 1,567.57 F101677 1,500 1,491.42 J2092 17.29 1,637.11 F102360 1,500 1,492.02 F110486 12.02 1,502.63 F118513 1,500 1,492.13 F118549 19.55 1,588.07 F102569 1,500 1,493.31 J2092 16,65 1,625.21 bn ettp e``11 M�� "i IoN Sea;esses PH uO-~^--; aq A}I fay Fa zz uiJ K 0 Z O a z o o L Z O O Q 06000 u Ja o Ln O 6000 z } W Ln �+. W Z J _j Ncc ¢ oL3m N N W OJ 2 =LLX afW+W LL t1 �u!Z�P1JL�7'1�0 C i -- fa, a � - � I f I i � E I � 1 1 PLf JanOssO J r.� c N} M TABLE C2.5 Phase I Gulley Pressure Plane Fire Flow Results (2017 - 2022) Fayetteville Water Master Plan Fire Node F100231 TargetFlow Fire Flow .. 1,500 Available Fire Flow at Fire Node .. 645.29 Fire Flow Critical Node . F100231 System •. Pressure 20.00 Fire ..- to Maintain i . Critical Node .. 716.90 F102929 1,500 649.26 F102929 20.00 717.82 FH11892 1,500 654.19 FH11892 20.00 767.94 F102175 1,500 664.18 FH11892 19.47 771,48 F102928 1,500 668.12 J1612 18.73 733.39 F104866 1,500 670.47 F104866 20.00 742.57 F103172 1,500 705.49 F103172 20.00 797.11 F102644 1,500 708.80 F102644 20.00 800.37 F100198 1,500 708.80 F103172 20.00 801.07 F114911 1,500 767.78 11612 16.66 822.55 F102173 1,500 777.31 F102173 20.00 921.20 FH11886 1,500 793.54 FH11886 20.00 884.06 F114247 1,500 811.87 F104866 12.65 832.26 F107299 1,500 824.65 F107299 20.00 921.31 J2962 1,500 852.71 J2962 20.00 1,046.79 FH11885 1,500 853.93 F104866 11.98 869.71 F116352 1,500 867.83 F116352 20.00 1,087.26 F112304 1,500 894.12 F112304 20.00 1,071.60 F112213 1,500 917.44 F112213 20.00 1,078.99 F113278 1,500 922.14 F107299 18.44 1,009.89 F100203 1,500 949.02 F100203 20.00 1,107.89 F115246 1,500 967.65 F115246 20.00 1,077.89 F114454 1,500 975.75 F114454 20.00 1,077.12 F112214 1,500 991.04 F112214 20.00 1,064.08 FH10400 1,500 993.19 F112214 20.00 1,066.61 FH11884 1,500 1,030.25 F107299 16.55 1,103.26 FH10401 1,500 1,031.97 F114110 15.46 1,165.66 F100375 1,500 1,068.05 F114110 14.07 1,166.70 J1016898A 1,500 1,074.95 F114110 16.03 1,232.20 F100204 1,500 1,096.60 F103172 8.22 1,071.43 F103182 1,500 1,108.89 F103182 20.00 1,235.26 F116867 1,500 1,129.11 F114110 13.27 1,210.48 F112110 1,500 1,168.65 F114110 7.44 1,110.14 F102673 1,500 1,174.52 F114110 12.47 1,235.18 J3256 1,500 1,176.45 F114110 12.27 1,232.12 F112302 1,500 1,178.29 F114110 12.21 1,232.41 F115113 1,500 1,178.92 F100351 13.91 1,245.20 F109596 1,500 1,181.13 F114110 12.25 1,236.14 FH11168 1,500 1,184.20 F101647 18.14 1,295.87 13260 1,500 1,186.52 F114110 12.57 1,251.92 Fire Node ID F107313 ,.l Fire Flow ..... 1,500 Available Fire Flow @ 20-psi at Fire Node 1,187.68 Fire Flow System Critical Critical Node F107313 System NodeO. Pressure 20.00 Fire ,,. Flow to Maintain Critical ,, 1,357.60 F112303 1,500 1,196.50 F114110 11.48 1,232.41 F104865 1,500 1,202.37 F102173 14.06 1,269.38 F101650 1,500 1,218.48 F101647 14.77 1,281.88 F112369 1,500 1,228.78 F114110 13.07 1,311.31 F106124 1,500 1,249.85 F101647 13.49 1,296.72 F108590 1,500 1,266.38 F101647 16.69 1,362.03 F114303 1,500 1,272.20 J1598 16.25 1,383.42 J3262 1,500 1,302.58 F114110 9.00 1,274.62 FH02778 1,500 1,334.11 F114110 5.81 1,232.12 J1608 1,500 1,364.02 J1608 20.00 1,515.71 F100352 1,500 1,379.88 F103172 13.41 1,435.53 F100202 1,500 1,382.57 F103172 3.41 1,285.68 F100201 1,500 1,388.31 F103172 16.74 1,506.43 F109570 1,500 1,397.72 F114110 3.17 1,232.53 FH11167 1,500 1,416.01 F101647 14.91 1,492.13 11606 1,500 1,425.69 J1606 20.00 1,590.42 F112746 1,500 1,429.42 F101647 14.61 1,501.06 F114244 1,500 1,441.68 F114244 20.00 1,563.44 F100205 1,500 1,452.19 F100205 20.00 1,656.22 F114245 1,500 1,454.37 F114245 20.00 1,588.08 FH12090 1,500 1,455.39 FH12090 20.00 1,605.33 FH02968 1,500 1,456.28 FH02968 20.00 1,568.53 F112747 1,500 1,456.58 F101647 12.78 1,499.42 F102388 1,500 1,463.80 F107299 16.08 1,547.06 F112749 1,500 1,466.34 F101647 12.15 1,499.42 FH12066 1,500 1,466.41 J1598 9.43 1,456.07 F102407 1,,500 1,480.03 F107299 9.29 1,470.87 F114304 1,500 1,482.06 J1598 9.00 1,463.97 F109159 1,500 1,493.32 FHO2968 18.93 1,594.74 TABLE C2.6 Phase I Goshen Pressure Plane Fire Flow Results (2017 - 2022) Fayetteville Water Master Plan 'Fire Node FH02787 Target Fire Flow 1,500 Available Fire Flow @ 20 -psi at Fire Node 522.70 Fire Flow System Critical Node J956 System Critical 13.20 Fire Node Flow toMaintain 0. ..- 946.27 FH03468 1,500 616.79 F112076 -48.39 412.66 11726 1,500 639.16 J956 13.20 946.34 F114165 1,505 673.50 F112076 -54.36 439.35 V100450 1,509 712,02 J956 13.20 1,010.71 F105411 1,500 732.10 F105412 10.85 723.07 F114135 1,501 747.80 F112076 -9.88 629.63 F100885 1,500 762.04 F105412 2.17 723.23 F114159 1,500 780.35 F114149 9.63 750.20 F115097 1,500 793.61 F112076 -1831 629.24 F114164 1,500 799.20 F112076 -66.38 491.41 F114136 1,500 827.30 F112076 -24.72 629.05 F114162 1,500 839.65 F114149 8.68 750.20 F114163 1,500 890.41 F112076 -67.53 543.98 F114137 1,500 954.98 F112076 -50.41 629.36 F100873 1.501 1,010.11 F114149 5.77 751.12 F115006 1,500 1,110.55 F114149 3.84 750.11 F100866 1,500 1,110.59 F114149 3.84 750.00 F103829 1,500 1,121.19 F114149 3.62 750.00 F114141 1,500 1,144.91 F114149 3.13 750.33 F100878 1,501 1,155.20 F114149 2.92 750.44 F100897 1,500 1,168.90 F114149 2.63 750.00 F109099 1,500 1,176.69 F114149 2.45 750.40 F100874 1,501 1,179.66 F114149 2.41 750.64 F100871 1,500 1,192-52 F114149 2.14 750.00 F100876 1,500 1,197.86 F114149 2.02 750.00 F100877 1,500 1,200.45 F114149 1.96 750.07 F109098 1,500 1,202.03 F114149 1.90 750.00 FH02849 1,500 1,207.14 F114149 1.82 749.92 F110507 1,500 1,226.61 F112076 -113.83 629.05 F110500 1,501 1,259.76 F114149 0.68 751.10 FH02947 1,500 1,262.63 F114149 0.59 749.92 F107398 1,500 1,312.71 J956 13.20 1,555.86 F109093 1,500 1,339.54 F114149 -1.15 750.18 FH02948 1,500 1,340.80 F114149 -1.19 749.92 F109104 1,500 1,350.43 F114149 -1.41 750.00 F109096 1,500 1,361.59 F114149 -1.67 750.00 F109112 1,501 1,384.45 F114149 -2.18 751.26 F109106 1,501 1,399.77 F114149 -2.56 750.72 F114130 1,500 1,403.61 F112076 -115.45 712.50 F109101 1,500 1,431.66 F114149 -3.35 750.00 F100199 1,500 1,437.44 J956 13.20 --. FH10182 1,500 1,445.02_ J956 13.20 --- F103170 1,500 1,469.99 J956 13.20 1,555.69 F103169 1,500 1,489.95 F114233 12.45 1,549.89 F100834 1,500 1,496.31 F112076 -7.11 1,268.16 FHO2 550 1,500 1,499.53 F114149 -5.05 749.92 i■.i OREM .. ~ mx t ur r` 7A W+nRE A .og'.ID Ir r ■ TABLE C3.1 Phase II Primary Pressure Plane Fire Flow Results (2022 - 2027) Fayetteville Water Master Plan Available Fire Flow Node F116411 System Pressure 12.66 Fire Node Flow o Maintain , Critical N .�- 600.48 Fire Flow Target @ 20 -psi Fire Node Fire Flow at Fire.�•Critical _11.�. F112151 1,500 0.79 F117382 1,500 0.91 F117382 15.86 2,482.33 F105909 1,500 1.26 F105909 15.92 641.54 F107071 1,500 1.30 F107071 15.80 3,106.94 F116411 1,500 1.75 J2258 6.78 485.26 F111751 1,500 2.27 F111751 1134 4,128.99 F101489 1,500 70.59 F101489 20.00 63.29 F100432 1,500 109.70 F100432 20,00 114.78 J2130 1,500 154.68 12130 2000 162.77 J2008 1,500 192.08 12008 20.00 216.53 F114984 1,500 197.06 F114557 14.19 200,24 F115205 1,500 233.44 12008 3.94 219.39 F114243 1,500 288.27 J2008 -20.10 221.83 F114459 1,500 320.70 F114459 20.00 365.84 F102172 1.500 348.97 12008 -47.02 228.57 F116398 1,500 357,82 F114459 13.07 371.00 F115207 1,500 367.57 12008 57.24 227.39 F111727 1,500 380.05 F111727 20.00 3,300.18 F104061 1,500 381.15 F114459 6.27 36502 F115208 1,500 384.00 J2008 -62.69 232.01 V103375 1,500 392.80 J2008 -65.27 233.54 F104062 1,500 401.60 F114459 8.39 393.94 F102174 1,500 403.45 J2008 -66.06 238,68 F103858 1,500 404.00 F105427 12.58 412.38 F114228 1,500 405.22 12008 -66.65 239.06 F114227 1,500 406.54 12008 -67.53 238.88 F100904 1,500 407.45 F105427 11.95 413.76 FH03420 1,500 407.77 12008 -67.98 23907 F102119 1,500 408.58 12008 -68.34 239.20 F102919 1,500 410.11 12008 -69.13 239.24 F105981 1,500 411.98 F105981 20.00 710.73 F100837 1,500 427.26 F105427 5.38 412.58 F104802 1,500 434.85 12008 -53.19 275.03 F105497 1,500 436.71 F1144S9 -2.18 383.54 F115209 1,500 442.27 J2008 -68.00 259.98 F104063 �_ 1,500 445.43 F114459 -253 389.51 F114242 1,500 462.88 12008 -71.60 287,42 F104801 1,500 466.56 J2008 -62.89 281.82 F101456 1,500 478.14 F105427 -9,S6 420.31 F101534 1,500 479,19 F105576 6.61 452.93 F102990 1,500 481.15 J2008 -47.94 313.47 F102604_ 1,500 489.61 J2008 -51.34 313.39 F101179 1,500 495.00 J2008 -51.28 316.91 F116817 1,500 495.12 F113714 16.21 526,97 F101178 1,500 497.90 J2008 -54.78 313.16 F101183 1,500 504.37 F114459 -19.17 383.80 F115769 1,500 505,78 F105576 5.03 466.35 F101182 1,500 508.29 12008 -20.83 391.43 F104064 1,500 1 S10.55 F114459 -15.38 39931 Fire de �� J2348 Target Fire Flow 1,500 Available Fire Flow @ �. at Fire Node .p 510.93 Fire Flow Critical Node F105576 System Pressure 6.64 Fire Node Flow � Maintain 0, Critical 484.88 Node F116953 1,500 512.42 F116953 20.00 579.09 F114236 1,500 512.66 J2008 -67.74 303.18 F101180 1,S00 513.92 J2008 -51.72 328.92 F106048 1,500 528.11 F105427 -22.05 429.37 FlOS498 1,500 528.24 F114459 -25.97 382.47 F101181 1,500 528.83 J2008 -42.83 355.31 F114460 1,500 539.69 12008 -38.37 372.16 F101455 1,500 573.87 F105427 -34.53 437.77 F103621 1,500 573.92 F103621 20.OD 600.14 J842 1,500 576.12 J842 20.00 751.36 F105494 1,500 581.34 F105494 20.00 774.50 F118150 1,500 581.77 F105427 -35.73 441.35 F101184 1,500 589.44 F114459 -42.71 384.95 F112564 1,500 592.08 F112564 20.00 733.75 F116622 1,500 600.89 F112564 19.44 733.90 V110776 1,500 600.92 F112564 19.44 733.92 F112566 1,500 601.01 F112564 19.44 734.01_ F112567 1.500 606.50 F112564 19.08 733.99 F119164 1,500 606.62 F112564 19.08 734.13 F115063 1,500 608.64 F114459 -39.22 404.07 F10118S 1,500 609.82 F114459 -48-92 384.65 F113308 1,500 617.16 F105578 -4.81 46901 F112569 1,500 617.40 F112564 18.53 736.50 F1139S4 1.500 629.51 F105427 -39,28 469.49 F113376 1,500 631.78 F112564 19,25 767.86 F119212 1,500 634.96 F119212 20.OD 698.20 F108965 1,500 637.76 F105427 -34.68 485.67 F101533 1,500 63984 F105578 -736 468.70 F101454 1,500 653.31 F105427 -35.21 496.52 F102740 1.500 661.78 F115178 -33.02 345-75 J944 1,500 66289 F115178 -33.12 346.27 F101186 1,500 664.76 F114459 -55.05 404.38 F113685 1,500 691.49 F113685 20.00 826.59 F112928 1,500 692.98 F112927 2.20 586.06 F103762 1,500 695.15 F103762 20.00 740.80 12300 1,500 702.00 J2300 20.00 806.36 F113684 1,500 702.40 F113684 20.00 835.99 V111364 1,500 720-44 V111365 10.62 723.16 F104224 1,500 722.08 F105427 -44.73 524.99 F104068 1,500 742.16 F114459 -62.86 435.75 F101460 1,500 748.08 F105578 -7.95 54220 F113028 1,500 762.41 F113028 20.00 937.58 V107887 1,500 764.89 V107887 20.00 958-73 F110315 1,500 780.41 F112927 -5.05 586.06 F101187 1,500 786.98 F114459 -66,53 455.16 F113952 1,500 788.30 F105427 -49.52 561.09 F100743 1,500 793.30 F115178 -56.59 347.40 F116524 1,500 813.46 F112927 •7.93 586.37 F105598 1,500 813.48 F114459 2.25 749.36 V108941 1,500 819.49 F112927 -8.50 586-06 F114626 1,500 822.78 F114626 20.00 976.68 F116394 1,500 823.62 F116394 20.00 1,080.94 FH14189 1,500 825.02 FH14189 20.00 1,077.03 F114457 1,500 834.05 F114459 -0.23 750.20 F112511 1,500 848.06 F112511 20,00 963.13 Fire � D Target Available Fire Flow @ 20 -psi Fire Flow ., System Fire Node Flow o Maintain 0, F101458 1,500 851.31 F105427 -48.07 609.32 V108940 1,500 852.78 F112927 •11.55 586.06 F117861 1,500 859.02 F117961 20.00 902.59 F104069 1,500 859.02 F1144S9 -68.29 494.73 1`11S872 1,500 862.87 F117326 17.67 1,039.06 11616 1,500 867.28 F108674 12.94 918.00 F102785 1,500 878.11 F105282 2.33 827.01 F110728 1,500 879.61 J22S8 6.76 918.74 F106926 1,500 889.20 F105282 2.45 838.24 1`113867 1,500 891.83 J2258 6.76 927.05 F115860 1,500 893.91 F115860 20.00 937.27 13028 1,500 894.55 F100244 15.55 944.58 V101475 1,500 899.71 F103762 20.00 959.28 F111916 1,500 904.55 F108674 8.79 885.35 F111915 1,500 908.45 F108674 9,09 893.97 F105719 1,500 90899 F105719 20.00 1,022.53 F111914 1,500 911.07 F108674 9.09 896.52 F106142 F109632 1,500 1,500 918 16 924.29 F1144S3 F109632 16.12 20.00 969.26 960.32 F113412 1,500 924.67 F115178 -64.05 384.99 FH11458 1,500 929.72 F105427 -46.33 669.92 V100679 1,500 931,36 V100679 20.00 979.46 F115223 1,500 940.32 F114459 -14.37 750.03 V100678 1,500 941.36 V100678 20.00 998.98 FH14341 1,500 944.08 F108674 9.35 933.14 F101189 1,500 944.13 F114459 -72.19 536.25 F108902 1,500 946.22 F108902 20.00 983.16 F113542 1,500 948.30 F1D5282 6.31 920.30 P104314 1,500 962.88 F114459 -69.33 554.91 F114834 1,500 963.02 F112927 -4.78 725.47 F102812 1.500 965.91 F105427 -50,10 684.62 F106445 1,500 974.61 F106445 20.00 1,030.21 F112453 1,500 974.88 J2300 11.69 996.26 F113866 1,500 974.96 J2258 6.76 1,022.11 F104580 1,500 982.53 F104580 _ 20.00 1,029.26 11620 1,500 983.63 F108674 7.75 945.43 F106331 1,500 992.49 F106331 20.00 1,127.68 F102813 1,500 992.93 F105427 -51.73 698.74 F100255 1,500 1,001.69 1`100244 9.81 999.39 F112986 1,500 1,007.74 F114012 -2.54 953-70 F114458 1,500 1,019.38 F114459 -25.77 749.43 V102900 1,500 1,023.95 F113700 18.50 1,066.59 F102599 1,500 1,031.57 F102599 20.00 1,153,80 J1628 1,500 1,038.64 F108674 8.56 1,011.72 F100262 1,500 1,056.18 F100262 20.00 1,122.89 F117418 1.500 1,057.51 F117861 15.72 1,087.30 V102777 1,500 1,062.60 F115279 -29.11 728,54 F118218 1,500 1,066.31 F118218 20.00 1,122.81 F115184 1,500 1,068.97 J2258 6.76 1,132.23 F104228 1,500 1,069.74 F105427 -37.29 801.88 F110313 1,500 1,075.63 F110313 20.00 1,129.58 FH11291 1,500 1,076.17 FH11291 20.00 1,146.77 11528 1,500 1,077.18 F105427 -24.85 859.05 V109028 1,500 1,079.67 V109028 20,00 1,134.06 F110314 1,500 1,079.96 V109028 20.00_ 1,134.36 V107888 1,500 1 1,079.99 V107887 9.88 1,077,38 Fire de �� F118032 Target Fire Flow 1,500 Available Fire Flow @ 20 -psi at Fire Node 1,081.97 Fire Flow System Critical Node F118032 System Critical Node Pressure 20.00 Fire Node Flow to Maintain 0-p Critical Node 1,136.58 J1526 1,500 1,083.26 F105427 -25.91 859.05 F102716 1,500 1,083.82 F102716 20.00 1,121.02 F113697 1,500 1,084.52 F113697 20.00 1,234.06 F107281 1,500 1,084.86 F105427 -26.19 859.05 V110931 1,500 1,089.34 V110931 20.00 1,125,03 F105718 1,500 1,095.09 F105718 20.00 1,190.18 F116576 1,500 1,095.26 F105578 1,156.73 FH02342 1,500 1,095.42 F105578 _12.12 1208 1,155.73 F102344 1,500 1,099.85 F102344 20.00 1,257.53 F117424 1,500 1,101.22 F117424 20.00 1,15335 F107828 1,500 1,108.76 F117327 17.61 1,349.97 F109602 1,500 1,110.03 F109602 20.00 1,230.08 F101581 1,500 1,112.64 F114459 -66.63 652.74 F117200 1,500 1,114.00 F117200 20.00 1,171.48 F104579 1,500 1,118.79 F105578 11.31 1,156.54 V101487 1,500 1,125.50 F113478 19.32 1,181.92 F113377 1,500 1,128.71 F112564 -8.07 875.64 F108263 1,500 1,128.72 F113981 16.92 1,332.67 F113359 1,500 1,132.25 F113361 17.84 1,185.60 F115917 1,500 1,135.79 F115917 20.00 1,193.29 F113411 1,500 1,136.33 F115178 -70.27 452.31 V102893 1,500 1,136.50 V102993 20.00 1,213.43 F117862 1500 1,137.05 F117420 15.35 1,166.21 F105499 1,500 1,138.24 F105489 20.00 1,193.73 F112446 1,500 1,139.10 F105578 10.65 1,157.69 FH11294 1,500 1,143.53 F105578 10.43 1,155.73 F112451 1,500 1,146.53 F105578 10.38 1,157.42 F109605 1,500 1,147.34 F109602 18.71 1.253,32 F107125 1,500 1,149.04 F107125 20.00 1,255.92 F112443 1,500 1,150.00 F105578 10.20 1,155.82 F112450 1.500 1,150.70 F105578 10.18 1,155.82 F108260 1,500 1,152.13 F117327 16.33 1,349,97 F101405 1,500 1,153.09 F101405 20.00 1,359.53 F118055 1,500 1,153.44 F118055 20.00 1,214.99 V107490 1,500 1,156.66 F109602 17.81 1,251.36 V102947 1,500 1,156.93 V102947 20.00 1,230.93 F109604 1,500 1,157.38 F109602 17.84 1,252.49 F112448 1,500 1,158.72 F105578 9.91 1,156,24 FH02344 1.500 1,159.03 F105578 9.88 1,155.73 F107017 1,500 1,160.40 F107017 20.00 1,218.20 FH03753 1,500 1,160.56 FH03753 20.00 1,207.36 FH10579 1,500 1,163.45 F107017 20.00 1,221.54 J94 1,500 1,173.08 J94 2000 1,466.86 J2072 1,500 1,173.20 12072 20.00 1,336.04 F115959 1,500 1,174.41 F115959 20.00 1,266.25 F101917 1,500 1,174.81 F117327 15.65 1,349.97 J1824 1,500 1,176.14 F105578 9.35 1,157.58 12320 1,500 1,177.28 12320 20.00 1,290.63 F106141 1,500 1,177.45 F114453 4.08 1,122.16 F113686 1,500 1,178.11 F113686 20.00 1,407.77 F104703 1,500 1,181.02 F105578 9.14 1,156,73 F112447 1,500 1,181.39 F105578 9.10 1,155.82 FH10324 1,500 1,181.56 F105278 18.74 1,264.82 F113982 1,500 1,181.82 F113981 15.95 1,349.10 F112243 1,500 1,182.27 F117861 17.47 1,226.41 Fire de ,� V104455 Target Fire Flow 1,500 Available Fire Flow @ 20 -psi at Fire Node .. 1,184.79 Fire Flow System Critical Node F105592 System Critical Node Pressure 18.91 Fire Node Flow o Maintain 10. Critical Node 1,230.83 F104137 1,500 1,187.20 F105427 -24.47 947.75 F117178 1,500 1,189.25 F105578 8.93 1,158.81 J2318 1,500 1,190.93 J2318 20.00 1,293.35 F116556 1,500 1,191.45 F117200 16.95 1,233.26 V106064 1.500 1,194.61 F105282 -5.34 1,065.58 F100245 1,500 1,194.78 F108674 5.26 1,101.51 V102172 1,500 1,197.16 V102172 20.00 1,349.90 F107860 1,500 1,199.16 F107860 20.00 1,243.36 FH12246 1,500 1,200.26 V101008 18.87 1,236.74 F108381 1,500 1,200.94 V101008 18.41 1,235.39 F115180 1,500 1,201.41 F105282 > -5.34 1,071.62 F115910 1,500 1,201.70 F117420 19.78 1,259.84 J1822 1,500 1,201.84 F105578 8.40 1,156.78 F1079S2 1,500 1,202.48 F105282 -5,34 1,072.57 F108379 1,500 1,208.72 F102716 15.53 1,231.26 F106441 1,500 1,215.50 F106441 20.00 1,271.75 F114621 1,500 1,215.82 F114621 20.00 1,398.96 FH14563 1,500 1,215.97 F108674 -2.78 999.12 F116044 1,500 1,216.03 F116044 20.00 1.278.66 F107048 1,500 1,222.89 F107048 2000. 1,307.27 F106693 1,500 1,223.70 F117327 14.13 1.349.97 1`101S72 1,500 1,224.83 F114459 -58.34 749.36 F103945 1,500 1,225.47 F103945 2D.00 1,291.22 F101918 1,500 1,227.16 F117327 14.16 1,354.58 F101714 1,500 1,227.38 F101714 20.00 1,290.00 V100092 1,500 1,229.18 V100092 20.00 1,309.45 FH02345 1,500 1,229.34 F105578 7.37 1,155.73 F115859 1,500 1,234.45 F118218 15.84 1,271.49 F113312 1,500 1,237.05 F105578 -36.91 654.15 F113683 1,500 1,237.97 F113685 19.22 1,457.71 V100193 1,500 1,238.93 V100193 20.00 1,300.40 F108261 1,500 1,243.23 F117327 13.52 1,349.97 F112223 1,500 1,244.77 F112223 20.00 1,301.48 F113928 1,500 1,247.04 F113928 20.00 1,411.82 F118113 1,500 1,247.10 1`118113 20.00 2,069.00 F118090 1,500 1,248.46 F118090 20.00 1,312.75 F114625 1,500 1,249.31 F11462S 2000. 1,490.51 F109601 1,500 1,250.30 F109602 14.54 1,307.16 F100452 1,500 1,250.69 F108674 -3.44 1,019.21 FH02384 1,500 1,251.29 F105578 6.57 1,155.73 F106694 1,500 1.254.20 F117327 13.17 1,349.97 F104315 1,500 1,255.54 F114459 -52.83 790.95 F103888 1,500 1,258.65 F103888 20.00 1,325.52 F112879 1,500 1,258.85 F119055 16.29 1,299.93 F116552 1,500 1,260.24 F118218 15.06 1,292.85 V103618 1,500 1,267.89 12258 6.76 1,391.36 J1570 1,500 1,268.98 FH03753 18.79 1,313.75 F105438 1,500 1,270.19 F105438 20.00 1,317.50 F106134 1,500 1,270.26 12320 19.16 1,381.30 J58 1,500 1,273.61 F118055 14.43 1,302.41 J1624 1,500 1,281.35 F108674 -5.94 1,011.72 F101399 1,500 1,281.92 F101399 20.00 1,482.27 FH03916 1,500 1,282.83 FH_03916 20.00 1,418.94 F100763 1,500 1,288.33 F113471 -6.64 1,161.70 F115861 1,500 1,290.66 1 F118090 19.66 1,354,70 Fire � D F11S271 Target 1,500 Available Fire Flow @ 20 -psi 1,291.79 Fire Flow System •• F115271 System Critical Node 20.00 Fire Node Flow to Maintain 0, 1,345.97 F108264 1,500 1,294.18 F108264 20.00 1,606.40 F100286 1,500 1,294.65 F107125 17.61 1,383.86 F102687 1,500 1,296.80 J2318 17.88 1,382.59 F102901 1,500 1,297.47 F102901 20.00 1,651.45 F101397 1,500 1,301.66 F114625 19.71 1,544.10 F109923 1,500 1,302.04 F109923 20.00 1,976.02 F113320 1,500 1,305.92 F105578 4.54 1.156.19 F101400 1,500 1,305.95 F101400 20.00 1,511,91 F113329 1,500 1,306.82 F105578 4.50 1,155.96 F113497 1.500 1,312.01 F113497 20.00 1,380.68 F115889 1,500 1,315.82 F105578 4-39 1.162.02 F100246 1,500 1,317.24 F108674 -1.73 1,097.12 F102648 1,500 1,322.38 F115092 5.50 1,263.11 FH10278 1,500 1,323.27 F115092 5.88 1,268.65 F100257 1,500 1,323.50 F115092 5.50 1.264.17 F117346 1,500 1,324.59 F118113 19.20 2,078.73 V108021 1,500 1,325.97 V108021 20.00 1,415.34 F107459 1,500 1,328.04 F107459 20.00 1,391.64 V101257 1,500 1,328.85 F115178 -5.09 934.32 J1626 1,500 1,332.65 F108674 -8.27 1,023.45 F113331 1,500 1,332.96 F105578 3.52 1,156.40 F103190 1,500 1,338.60 F115092 6.10 1,286.16 F112822 1,500 1,338.67 F112822 20.00 1,540.50 F105723 1,500 1,339.30 V103604 17.47 1,589.77 F109922 1,500 1,339.89 F109923 19.97 2,028.10 F100761 1.500 1,340.02 F105389 15.03 1,372.54 F102745 1,500 1,341.38 F103762 20.00 1,431.35 F100758 1,500 1,343.66 F103762 20.00_ 1,433.87 V110933 1,500 1,345.88 V110933 20.00 1,410.37 V106502 1,500 1,355.32 V106502 20.00 1,419.33 F117207 1,500 1.355.40 F117207 20.00 1,425.55 F106144 1,500 1,357.53 F106144 20.00 1,438.39 F108013 1,500 1,360.05 F100262 15.89 1,409.67 F116554 1,500 1,361.58 F118219 15.75 1,402.01 F105273 1.500 1,362.57 F105273 20.00 1,429.75 F101818 1,500 1,364.05 F114431 18.33 1,497.74 F105991 1,500 1,364.44 F105578 2.29 1,156.11 F109793 1,500 1,366.88 F105578 2.22 1,15655 F107476 1,500 1,367.54 F107476 20.00 1,442.24 F108254 1,500 1,367,71 F117327 8.94 1,337.21 F104994 1,500 1,367.72 F104994 20.00 1,593.36 V105664 1,500 1,368.28 V105664 20.00 1,442.73 F110528 1,500 1,369,83 FH03916 15.20 1,440.19 F109598 1,500 1,369.88 F109602 9.88 1,368.36 F113894 1 1,500 1,370.09 F113894 20.00 1,427.62 J460 1,500 1,370.74 FH03916 15.41 1,444.24 F113979 1,500 1,371.12 F117327 11.42 1,415.18 F101916 1,500 1,372.89 F117327 11.05 1,405.20 F106698 1,500 1,375.09 F117327 1129 1,415.18 F108511 1,500 1,380.62 F117327 10.12 1,384.26 F108257 1,500 1,382.54 F117327 8.31 1,334.25 F115091 1,500 1,382.69 F117327 1105 1,415.18 V109271 1,500 1,383.54 FH03916 15.18 1,454.32 F106132 1,500 1,384.92 F107125 12.34 1,412.39 F103351 1,500 1,387.28 F115178 3.11 1,143.27 Fire Node V107750 Target Fire Flow 1,500 Available Fire Flow @ 20 -psi at Fire Node 1,387.97 Fire Flow System Critical Node.. V108021 System Critical Node 17.95 Fire Node Flow to Maintain 0. 1,460.50 F105564 1.500 1,391.39 F105564 20.00 1.517.84 F100083 1,500 1,394.30 F114012 16.22 1,436.65 F116584 1,500 1,396.47 F116584 20.00 1,467.44 F118237 1.500 1,397.68 F118237 20.00 1,489.95 F114032 1,500 1,399.71 F114032 20.00 1,451.89 F117882 1,500 1,401.13 F117882 20.00 1,621.85 V100510 1,500 1,401.50 V100510 20.00 1,491.25 1`103397 1,500 1,401.84 J2320 12.32 1,430.30 V100389 11500 1,402.37 V100388 20.00 1,472.07 F107676 1,500 1,402.43 F107676 20.00 1,568.94 1354 1,500 1,403.73 V108021 18.40 1,482.03 V107746 1,500 1,406.31 V109021 16.08 1,462.03 F118021 1,500 1,406.46 F118113 19.09 2,18311 F107884 1,500 1,406.78 V100388 19.69 1,474.57 V107748 1,500 1.407.95 V10S021 15.99 1,462.84 F104698 1,500 1,408.13 F105578 0.56 1,155.82 F113543 1,500 1,410.21 F105282 -11,90 1,207.68 F117416 1,500 1,412.62 F117416 20.00 1,597.64 F110529 1,500 1,412.89 FH03916 12.69 1,449.16 V105137 1,500 1,414.97 V105137 20.00 1,493.42 F106980 1,500 1,415.27 1`106980 20.00 1,49333 F110400 1,500 1,415.57 F110400 20.00 1,640.55 V101280 1,500 1,416.06 F115178 5.71 1,245.56 F116919 1,500 1,417.05 F116919 20.00 1.,491.19 F113410 1,500 1,418.55 F115178 -73.68 548.19 F114988 1,500 1,422.48 F114988 20.00 1,520.65 F102600 1,500 1,425.01 V103604 15.03 1,589.55 F114293 1,500 1,425.30 F108674 3.36 1,273.61 F106436 1,500 1,426.01 F115178 8.61 1,362.81 J346 1,500 1,427.04 V108021 18.15 1,504.27 1348 1,500 1,429.39 V108021 17.99 1,504.95 F107367 1,500 1,429.70 F107367 20.00 1,637.32 FH03157 1,500 1,430.10 FH03157 20.00 1,502.17 F118006 1,500 1,430.18 F118006 20.00 1,504.74 FH03751 1,500 1,430.57 F113921 5.89 1,247.88 V110553 1,500 1,431.87 V110553 20.00 1,501.29 F105221 1,500 1,432.26 F105221 20.00 1,529.64 F105706 1,500 1,435.03 F105706 20.00 1,498.04 J1922 1,500 1,438.05 F110400 19.62 1,653.90 F102768 1,500 1,438.76 V101654 15.02 1,468.15 F106330 1,500 1,439.28 V103604 14.60 1,589.09 F101768 1,500 1,439.57 F116411 0.93 629.07 FHO3153 1,500 1,439.65 FH03153 20.00 1,511.81 V107742 1,500 1,439.90 V108021 16.53 1,501.46 F106913 F118105 1,500_ 1,500 1,443.46 1,444.69 F113497 V108021 17.76 16.93 1,501.12 1,510.28 F100283 1,500 1,446.04 F114453 3.59 1,372.66 F118169 1,500 1,446.51 V108021 16.01 1,503.10 F102312 1,500 1,447.66 F114851 7.88 1,418.76 F101398 1,500 1,447.70 F113686 18.60 1,681.49 F112252 1,500 1,447.96 F112252 20.00 1,529.64 V106501 1,500 1,448.97 V106501 20.00 1,517.76 V108020 1,500 1,451.13 F116919 18.38 1,513.96 F106143 1.500 1.453.83 F106143 20.00 1,552.50 F110530 1,500 1,454.37 FHO3916 9,78 1,451.33 Fire Node F114291 Target Fire Flow 1,500 Available Fire Flow @ �. at Fire Node 1,454.83 Fire Flow Critical Node F108674 System ..- Pressure -7.83 Fire Node Flow + Maintain 0, Critical Node 1,122.41 F113869 1,500 1,455.25 J2258 6.75 1,463.24 J1074 1,500 1,455.50 J1074 20.00 1,527.73 F103193 1,500 1,456.44 F100262 16.64 1,517.22 J1924 1,500 1,459.40 F110400 18.17 1,640.46 F115320 1,500 1,460.89 V100388 19.27 1,527.88 F100430 1,500 1,461.93 V100389 19.13 1,527.88 F106385 1,500 1,462.18 F106395 20.00 1.546.57 FH10604 1,500 1,464.79 F115178 -11.09 933.37 F113188 1,500 1,465.33 F113188 20,00 1,550.98 F100755 1,500 1,466.70 F113476 13.43 1,507.59 F102649 1.500 1,468.33 F102649 20.00 1,561.15 FH10789 1,500 1,469.51 FH10789 20.00 1,536.70 F114321 1,500 1,471.65 F109602 7.01 1,431.85 F107457 1,500 1,472.28 F107457 20,00 1,543.37 F112221 1,500 1,472.39 F118219 17.98 1,534.47 F102650 1,500 1,472.97 F100262 15.40 1,522.38 F100261 1,500 1,473.66 F100262 15.32 1,522,38 F104569 1,500 1,474.60 F104569 20.00 1,742.31 F102484 1,500 1,474.90 F102484 20.00 1,547.08 F110531 1.500 1,475.79 FH03916 8.39 1,454.32 FH10443 1,500 1,477.69 F115178 7.44 1,362.72 F100414 1,500 1,478.18 F115178 7.45 1,363.81 FH10449 1,500 1,478.94 F115178 0.28 1,141.63 J1070 1,500 1,478.99 FH03157 19.14 1,547.38 FH03756 1,500 1,479.03 FH03756 20,00 1,538.98 F108375 1,500 1,484.90 F109375 20.00 1,550.51 F103195 1,500 1,485.52 F103195 20.00 1,588,39 F112984 1,500 1,486.39 F112984 20.00 1,572.07 J1422 1,500 1,487.54 J1422 20.00 1,602.36 F107131 1,500 1,489.67 F102344 16.13 1,610.91 F102340 1,500 1,495.21 F102340 20,00 1,694.57 F100285 1,500 1,496.31 J2320 9.82 1,493.98 TABLE C3.2 Phase II Township Pressure Plane Fire Flow Results (2022 - 2027) Fayetteville Water Master Plan Node F108209 TargetFlow Fire Flow 1,500 -Available Fire Flow i at Fire Node • •.p 1,052.83 Fire Flow Critical Node F108210 System ..• Pressure 19.51 Fire Node to Maintaini i. CriticalFire 1,116.17 F112924 1,500 1,167.53 F112924 20.00 1,393.04 F106404 1,500 1,207.05 F106404 20.00 1,317.27 V106209 1,500 1,283.92 F114817 -4.28 1,133.31 F106407 1,500 1,304.51 F106407 20.00 1,617.90 F102290 1,500 1,376.55 F104945 19.18 1,573.64 F100093 1,500 1,385.95 F112924 19.90 1,629.51 13280 1,500 1,405.64 13280 20.00 1,672.49 F108212 1,500 1,425.59 F114817 17.29 1,538.53 V108165 1,500 1,452.00 V108165 20.00 1,665.58 F115015 1,500 1,514.52 F106407 17.06 1,739.83 F107715 1,500 1,593.25 F106404 16.62 1,678.06 F106402 1,500 1,596.97 F106402 20.00 1,714.78 FH02198 1,500 1,663.61 F106407 12.49 1,727.46 F106406 1,500 1,731.19 F106407 13.06 1,818.40 FH11961 1,500 1,756.96 F114817 9.83 1,752.59 F102287 1,500 1,778.92 F114817 9.02 1,760.63 V100262 1,500 1,782.49 F106407 13.90 1,919.99 FH11960 1,500 1,905.88 F114817 14.06 1,982.70 J790 1,500 1,932.62 V108165 13.07 2,007.92 F110614 1,500 2,045.09 F106407 7.60 11939.32 F102310 1,500 2,097.46 F104944 18.42 2,238.22 F112327 1,500 2,102.09 F106407 6.58 1,961.42 FH10097 1,500 2,157.70 13280 -1.19 1,845.99 FH03942 1,500 2,237.53 FH03942 20.00 2,390.47 J2114 1,500 2,258.73 FHO3942 19.00 2,391.36 F112337 1,500 2,359.09 F106407 11.46 2,423.83 F112339 1,500 2,367.30 F106407 11.28 2,423.82 F112335 1,500 2,487.72 F106407 8.87 2,437.80 F112344 1,500 2,558.28 F106407 -7.72 1,980.09 F112331 1,500 2,870.23 F106407 1.39 2,453.81 S Askew Dr W Ravenswood Map Source: City of Fayetteville GIS Data Source: InfoWater Hydraulic Model LEGEND CITY LIMITS PLANNING BOUNDARY 0 0-500 GPM Q 500-1000 GPM 0 1000-1500 GPM • 1,500+ GPM NI 2027 SOUTH MOUNTAIN PRESSURE PLANE FIRE FLOW ANALYSIS EXHIBIT C3.3 TABLE C3.3 Phase II South Mountain Pressure Plane Fire Flow Results (2022 - 2027) Fayetteville Water Master Plan Fire Node ID V106075 Target Fire Flow .. 1,500 Fire Flow @ 20 -psi at Fire Node .. 1,182.70 Available Fire Flow System Critical Node . V106075 System Critical .. Pressure 20.00 Fire Node Flow to Maintain . Critical Node a, 1,229.84 F100545 1,500 1,211.63 F100545 20.00 1,273.47 F100542 1,500 1,215.20 F106202 19.66 1,274.28 F100544 1,5D0 1,234.08 F106202 19.50 1,293.26 FH10465 1,500 1 1,234.97 FH10465 20.00 1,285.33 FH10468 1,500 1,239.18 F106202 18.12 1,289.70 F100543 1,500 1,253.47 F106202 18.97 1,310.46 F106024 1,500 1,262.28 F106202 14.55 1,290.48 F108596 1,500 1,267.79 F106202 13.66 1,290.48 F108614 1,500 1,268.32 F106202 13.47 1,289.79 F108597 1,500 1,270.25 F106202 13.23 1,290.24 F108615 1,500 1,279.06 F106202 11.73 1,289.79 F105313 1,500 1,284.25 F105313 20.00 1,342.36 F100520 1,500 1,298.05 F106202 9.27 1,293.56 F113395 1,500 1,306.69 F100545 15.05 1,340,06 F100541 1,500 1,317.45 F106202 14.33 1,345.84 F107964 1,500 1,323.83 F105311 14.43 1,351.27 F102485 1,500 1,440.14 F106202 5.33 1,407.84 F107965 1,500 1,472.98 F105311 9.96 1,472.71 FH10460 1,500 1,478.75 F106202 8.68 1,468.94 F116098 1,500 1,479.54 F106202 14.58 1,515.30 F107971 1,500 1,480.46 F100545 10.78 1,486.47 FH10409 1,500 1,481.10 F100545 11.77 1,494.85 F107968 1,500 1,482.70 F100545 11.85 1,497.04 F100546 1,500 1,483.82 F106202 7.97 1,468.81 F100504 1,500 1,493.45 F100545 13.49 1,521.23 F113397 1,500 1,495.03 F100545 8.82 1,485.94 FH10410 1,500 1,501.96 F106202 12.79 1,523.98 F100502 1,500 1,505.77 F100545 10.84 1,512.38 F106025 1,500 1,524.80 F100545 8.93 1,516.35 F100507 1,500 1,547.59 F100545 0.58 1,476.57 F103503 1,500 1,552.15 F100545 5.57 1,517.20 F100506 1,500 1,582.17 F100545 -2.35 1,488.15 F100503 1,500 1,590.44 F100545 0.99 1,519.38 F100505 1,500 1,625.36 F100545 -4.86 1,510.11 F102482 1,500 1,700.58 F100545 -12.37 1,524.97 F103488 1,500 1,758.68 F100545 -16.63 1,545.99 F100377 1,500 T 1,789.78 F100545 -14.94 1,583.26 TABLE C3.4 Phase II Mt. Sequoyah Pressure Plane Fire Flow Results (2022 - 2027) Fayetteville Water Master Plan Available Fire Flow Fire Node Fire Node ID F108266 TargetFlow Fire Flow ,p 1,500 Fire Flow 0. at Fire Node .. 1,124.61 Critical Node . F108266 System .. 20.00 to Maintain 0. .. 1,249.18 F105561 1,500 1,184.99 F105561 20.00 1,399.85 F102952 1,500 1,260.66 F102952 20.00 1,304.57 F106332 1,500 1,298.76 F106332 20.00 1,345.20 F110486 1,500 1,329.68 F110486 20.00 1,377.63 F113296 1,500 1,335.03 F113297 20.00 1,455.79 J1584 1,500 1,336.58 J1584 20.00 1,390.24 F104458 1,500 1,348.03 F104458 20.00 1,445.02 F102570 1,500 1,371.18 F114411 12.75 1,392.97 J2092 1 1,500 1,371.99 J2092 20.00 1,554.90 FH02377 1,500 1,376.76 FH02377 20.00 1,437.30 F101751 1,500 1,380.40 F101751 20.00 1,634.08 F111800 1,500 1,383.97 F111800 20.00 1,470.59 F107311 1,500 1,423.46 F107311 20.00 1,472.18 F104971 1,500 1,424.92 F110486 14.80 1,449.67 F114413 1,500 1,445.53 F114413 20.00 1,618.01 F106328 1,500 1,453.78 V102658 0.29 1,384.07 F113971 1,500 1,489.92 F113971 20.00 1,585.86 F118549 1,500 1,491.82 F118549 20.00 1,589.95 ell too $a [ po WH mases p_-.-...3k----- � _ ■+ PH :g) 1■ uIO,y .2 \ \ 2 § 0\ � \0C70Ln §0763 [§Sk0\ u a 6 r - - /ease / PH 1 OSS — � .$ . stein TABLE C3.5 Phase II Gulley Pressure Plane Fire Flow Results (2022 - 2027) Fayetteville Water Master Plan Fire Node ID F102929 Target Fire Flow .. 1,500 Available Fire Flow . at Fire Node .. 648.76 Fire Flow Critical Node . F102929 System .. Pressure 20.00 Fire ,. Flow to Maintain.m 10 -psi Critical Nod�; ,. 717.13 FH11892 1,500 653.41 FH11892 20.00 766.95 F102175 1,500 663.42 FH11892 19.47 770.50 F102928 1,500 667.70 J1612 18.73 732.82 F104866 1,500 669.84 F104866 20.00 741.76 F100231 1,500 682.12 F100231 20.00 752.46 F103172 1,500 754.49 F103172 20.00 855.00 F102644 1,500 758.32 F102644 20.00 858.86 F100198 1,500 758.77 F103172 20.00 860.03 F114911 1,500 767.00 J1612 16.66 821.63 F102173 1,500 775.84 F102173 20.00 912.80 FH11886 1,500 789.78 FH11886 20.00 874.79 F114247 1,500 807.80 F104866 12.65 827.12 F107299 1,500 818.52 F107299 20.00 908.91 FH11985 1,500 847.13 F104866 11.98 862,04 F113278 1,500 907.57 F107299 18.44 989.21 F114454 1,500 962.38 F114454 20.00 1,057.91 FH11884 1,500 1,004.52 F107299 16.55 1,072.10 F112214 1,500 1,034.24 F112214 20.00 1,111.80 F115246 1,500 1,035.04 F115246 20.00 1,151.25 FH10400 1,500 1,037.01 F112214 20.00 1,114.98 F103182 1,500 1,080.01 F103182 20.00 1,197.96 F107313 1,500 1,119.94 F107313 20.00 1,299.09 FH11168 1,500 1,134.43 F101647 17.93 11248.08 F104865 1,500 1,156.99 F102173 14.06 1,220.20 F101650 1,500 1,168.46 F101647 14.77 1,234.64 FH10401 1,500 1,172.25 F114110 17.12 1,384.49 F106124 1,500 1,200.11 F101647 13.49 1,248.94 F114303 1,500 1,203.22 11598 16.25 1,320.97 J1016898A 1,500 1,204.20 J1016898A 20.00 1,390.59 F108590 1,500 1,212.78 F101647 16.69 1,312.22 F100375 1,500 1,237.56 F114110 15.07 1,385.55 F100204 1,500 1,239.53 F103172 8.22 1,214.76 J1608 1,500 1,311.13 11608 20.00 1,469.11 F116867 1,500 1,316.39 F114110 14.63 1,458.52 F102673 1,500 1,340.19 F114110 15.01 1,498.76 13256 1,500 1,347.82 F114110 14.69 1,495,68 F109596 1,500 1,350.64 F114110 14.73 1,499.72 FH11167 1,500 1,359.67 F101647 14.91 1,438.92 F112110 1,500 1,362.13 F114110 7.43 1,296.46 Fire Node ID F112302 TargetFlow Fire Flow .. 1,500 Available Fire Flow 0. at Fire Node .. 1,362.39 Fire Flow Critical Node F114110 System .. Pressure 14.25 Fire ,,. to Maintail 0. Critical Nod .. 1,495.99 J1606 1,500 1,369.04 J1606 20.00 1,540.28 F112746 1,500 1,373.09 F101647 14.61 1,447.64 FH02778 1,500 1,377.60 J1016898A 10.74 1,390.50 F116352 1,500 1,384.15 F116352 20.00 1,729.55 F114244 1,500 1,398.30 F114244 20.00 1,523.40 FH12090 1,500 1,401.44 FH12090 20.00 1,556.48 FH12066 1,500 1,402.15 11598 9.43 1,391.67 F112303 1,500 1,405.37 F114110 12.92 1,495.99 F114245 1,500 1,406.66 F114245 20.00 1,544.27 13260 1,500 1,409.08 F114110 13.78 1,530.01 F112747 1,500 1,409.77 F101647 12.26 1,446.00 FH02968 1,500 1,416.51 FH02968 20.00 1,531.60 F102388 F114304 1,500 1,500 1,417.44 1,417.99 F107299 J1598 15.91 9.00 1,501.25 1,399.35 F112749 1,500 1,418.66 F101647 11.71 1,446.00 F102407 1,500 1,436.65 F107299 9.29 1,427.19 F100203 1,500 1,443.93 F100203 20.00 1,684.29 FH14443 1,500 1,450.64 FH14443 20.00 1,591.07 F109159 1,500 1,453.41 FH02968 18.93 1,557.34 F107687 1,500 1,465.99 F107687 20.00 1,596.89 F109570 1,500 1,466.79 J1016898A 5.60 1,390.93 F106119 1,500 1,469.57 F106119 20.00 1,606.81 FH12084 1,500 1,489.39 FH12084 20.00 1,624.93 F114252 1500 1,494.52 F114252 20.00 1,676.23 F108591 1,500 1,497.43 F101647 12.33 1,537.01 FH12088 1,500 1,498.62 FH12088 20.00 1,629.04 F102425 1,500 1,499.57 F102425 20.00 1,634.54 TABLE C3.6 Phase II Goshen Pressure Plane Fire Flow Results (2022 - 2077) Fayetteville Water Master Plan Available Fire Flow Fire Node Fire Node ID FH02787 TargetFlow Fire Flow .. 1,500 Fire Flow at Fire Node •• 357.02 Critical Node ' FH02787 System •.• Pressure 20.00 to Maintain 1 i . Critical Node .. 827.56 J1726 1,500 516.12 FH02787 17.38 827.66 V100450 1,500 528.81 FH02787 17.66 882.94 FH03468 1,500 695.47 F112076 -48.40 416.38 F114165 1,500 778.38 F112076 -54.38 456.37 F105411 1,500 819.87 F105412 15.08 840.63 F100885 1,500 875.84 F105412 2.17 840.78 F114159 1,500 917.35 F105412 _ 9.27 913.38 F114164 1,500 991.86 F112076 -66.40 552.55 F114162 1,500 1,034.79 F105412 17.16 1,075.98 F114163 1,500 1,188.47 F112076 -67.57 663.09 F109099 1,500 1,249.59 F114149 6.29 989.90 F107398 1,500 1,249.63 F107400 19.24 1,578.84 F109099 1,500 1,279.95 F114149 5.79 989.48 F110500 1,500 1,334.61 F114149 4.95 991.64 F100873 1,500 1,337.39 F114149 7.80 1,129.44 FH02947 1,500 1,337.79 F114149 4.88 990.40 FH10182 1,500 1,352.17 FH10182 20.00 1,756.38 F 10 019 9 1,500 1,383.17 1`107400 18.34 l,694.08 F106758 1,500 1,416.98 FH02787 4.44 1,133.28 FH10236 1,500 1,420.35 FHO2797 4.63 1,142.13 F109093 1,500 1,427.84 F114149 3.30 990.01 FH02948 1,500 1,433.96 F114149 3.17 989.39 F109104 1,500 1,438.43 F114149 3.10 989.31 F109096 1,500 1,457.26 F114149 2.76 989.48 F103170 1,500 1,477.76 F107400 13.38 1,589.65 F109112 1,500 1,486.15 F114149 2.21 989.40 F109106 1,500 1,495.04 F114149 2.08 990.05 rl Lu C.0 • �y• cl— 0 Ln r� ■ BOB •O.■ WX �► �a UK - sit X10. ir, Ar 1.A. �•�Rf * � �r 7k f �Ff. ,.�_� Pia +. *we � e ( Mum f 1,.,,0 ' 4tflit _ Jnr '1r • n ,ryl�... r � Rj TABLE C4.1 Phase III Primary Pressure Plane Fire Flow Results (2027 - 2037) Fayetteville Water Master Plan Fire Node Target Fire Flow Fire Flow @ 20 -psi at Fire Node Available Fire Flow System Critical Node System Critical .d Pressure Fire Node Flow to Maintain 1 Critical Node F117382 1,500 -2.25 F117382 15.50 2,388.05 F112151 1,500 0.29 F116411 12.46 566.01 F107071 1,500 0.66 F107071 15.42 2,981.27 F111751 1,500 1.12 F111751 11.26 3,872.73 F116411 1,500 1.99 F116411 12.46 459.11 F105909 1,500 13.34 F105909 15.65 622.84 F101489 1,500 66.53 F101489 20.00 62.65 F100432 1,500 115.16 F100432 20.00 116.88 J2130 1,500 160.77 J2130 20.00 163.36 J2008 1,500 189.28 J2008 20.00 213.85 F114984 1,500 193.89 F114557 13.88 19811 F115205 1.500 230.76 J2008 3.94 21668 F111727 1,500 261.70 F111727 20.00 3,258.41 F114243 1,500 285.65 J2008 -20.10 219.05 F114459 1;500 315.49 F114459 20.00 360.83 F102172 1,500 346.34 J2008 -47.02 225.72 F116398 1,500 353.27 F114459 12.93 365.98 F115207 1,500 365,41 J2008 -57.24 224.51 F104061 1,500 376.32 F114459 6.22 360.00 F115208 1,500 381.86 J2008 -62.70 22908 F103858 1.500 367,77 F105427 12.53 396.21 V103375 1,500 390.62 J2006 -65.27 230.55 F100904 1,500 391.44 F105427 11.84 397.60 F104062 1,500 395.96 F114459 8.39 388.31 F102174 1,500 401.17 J2008 -66.06 235.60 F114228 1,500 402.94 J2008 -66.65 235.98 F114227 1,500 404.27 J2008 -67.54 235.80 FHO3420 1,500 405.48 J2008 -67.98 235.95 F102119 1,500 406.32 J2008 -68.34 236.11 F102919 1,500 407.87 J2008 -69.13 236.15 F100837 1.500 411.57 F105427 5.38 396.43 F104802 1,500 432.12 J2008 -53.20 271 43 F105497 1,500 432.79 F114459 -2.34 378.13 F115209 1,500 439.92 J2008 -68.01 256.59 F104063 1,500 440.09 F114459 -2.53 383.98 F101534 1,500 450.36 F105576 6,61 423.32 F114242 1,500 460.66 J2008 -71.60 284.28 F101456 1,500 463-33 F105427 -8.56 403.84 F104801 1,500 464.01 J2008 -62.90 278.12 F115769 1,500 476.38 F105578 5.83 430.37 F102990 1,500 477.75 J2008 -48.05 309.26 F102604 1,500 486.40 J2008 -51.52 309.18 F105981 1,500 486.65 F105981 20.00 758.57 F116817 1,500 488.82 F113714 16.21 520.38 J2348 1,500 490.65 F105576 6.64 463.80 F101179 1,500 492,04 J2008 -51.30 312.65 F101178 1,500 495.06 J2008 -54.80 308.95 F101183 1,500 500.17 F114459 -19-17 378.39 F105494 1,500 503.69 F105494 20.00 713.25 Available Fire Flow Fire Node Fire ... Target Fire Flow Fire Flow 1 @ ...• at Fire Node Critical Node 1 System Pressure Flow , Maintain 1 Critical Node 1 F101182 1,500 504.20 J2008 -2087 386.10 F104064 1,500 505.87 F114459 -15.38 393.58 F116953 1,500 507.16 F116953 20.00 57344 F114236 1,500 509.31 J2008 -67.76 299,13 F101180 1,500 511-00 J2008 -51.75 324.49 F106048 1,500 513.96 F105427 -22.05 412.55_ F105498 1,500 523.88 F114459 -26.04 377.06 F101181 1,500 52562 J2008 -42.87 35049 F114460 1,500 536.32 J2008 -38.41 367.10 F103621 1,500 538.56 F103621 20.00 566.08 F101455 1,500 560.22 F105427 -34.53 420.62 F118150 1,500 568.10 F105427 -35.73 424.08 J842 1,500 581 16 J842 2000. 750.91 F113308 1,500 585.06 F105578 -5.10 430,68 F101184 1,500 585.27 F114459 -42.76 379.54 F112564 1,500 59B.45 F112564 20.00 734.07 F102740 11500 602.71 F115178 -36.68 203.66 J944 1,500 603.76 F115178 -36.76 204.17 F115063 1,500 60422 F114459 -39.29 398.24 F101533 1,500 605.50 F105578 -7.37 430.37 F101185 1,500 605.67 F114459 -48.95 379.24 F116622 1,500 607.64 F112564 19.44 73422 V110776 1,500 607.67 F112564 19.44 734.23 F112566 1,500 60775 F112564 19.44 734.33 F112567 1,500 613,47 F112564 1908 73431 F119164 1,500 613.59 F112564 19.08 734.45 F113954 1,500 615.26 F105427 -39.28 45116 F108965 1,500 622.75 F105427 -34,68 466.69 F112569 1,500 624,84 F112564 18.53 736.81 F119212 1,500 638.05 F119212 20.00 700.91 F101454 1,500 638.34 F105427 -35.21 477.15 F113376 1,500 638.47 F112564 19.25 768.08 F103762 1,500 655.55 F103762 2000. 703.10 F101186 1,500 660.31 F114459 -55.06 398.56 F113685 1,500 669.33 F113685 20.00 807.25 J2300 1,500 671.27 J2300 20.00 777.41 V107887 1,500 675.42 F105238 12.15 861.03 F113684 1,500 680.49 F113684 20.00 816.82 F113028 1,500 682.01 F113921 14.00 845,43 F112928 1,500 700.89 F112927 2.31 597,71 F104224 1,500 707.25 F105427 -44.73504.60 _ F101460 1,500 707.90 F105578 -7.98 497.32 711364 1,500 716.84 V111365 10.62 718.99 F100743 1,500 721.89 F115178 -56.73 20528 F104068 1,500 737.63 F114459 -62.87 429.54 F113952 1,500 772.51 F105427 -49.52 539.43 F101187 1,500 78238 F114459 -66.55 448.74 F110315 1,500 78694 F112927 -4.86 597,71 F114626 1,500 800.30 F114626 2000. 957,15 F116394 1,500 804.50 F116394 20.00 1,062.86 FH14189 1,500 806.40 FH14189 20 00 1,059.31 F105598 1,500 80906 F114459 1.79 740.47 F110728 1,500 81540 F113866 17.48 853.31 F116524 1,500 819.19 F112927 -7.70 598.02 V108941 1,500 825.25 F112927 -8.27 597.71 F113867 1.500 827.49 F113866 16.61 861.21 F114457 1,500 829.43 F114459 -0.67 1 741.31 Available Fire Flow Fire Node Fire Node ID Target Fire Flow .. Fire Flow @ 20-psi at Fire Node System Critical ..- System Critical Node Pressure Flow o Maintain 10. Critical Node F101458 1.500 834.44 F105427 -48.07 586.01 F112511 1,500 840.43 F112511 20.00 956.05 F115872 1,500 845.65 F117326 17.67 1,022.72 V101475 1,500 846.37 F103762 20.00 908.29 F113412 1,500 846.71 F115178 -64.19 225.60 F102785 1,500 853.47 F105282 2.30 800.77 F104069 1,500 854.23 F114459 -68.32 487.92 V108940 1,500 858.81 F112927 -11.38 597.71 F117861 1,500 859.47 F117861 20.00 902.99 F106926 1,500 864.04 F105282 2.43 811.50 J1616 1,500 869.76 F108674 12.94 919.06 F115860 1,500 894.32 F115860 20.00 937.63 J3028 1,500 894.53 F100244 15.55 944.60 F111916 1,500 905.60 F108674 8.79 886.60 V100679 1,500 906.33 V100679 20.00 955.31 F111915 1,500 909.50 F108674 9.09 895.19 FH11458 1,500 911.54 F105427 -46.34 644.56 V100678 1,500 911.57 V100678 20.00 970.07 F111914 1,500 912.10 F108674 9.09 897.71 F105719 1,500 91433 F105719 20.00 1,027.12 F113542 1,500 919.54 F105282 628 890.68 F109632 1,500 921.48 J2258 6.35 957.21 F106142 1,500 921.55 F114453 16.12 972.46 F112453 1,500 934.99 J2300 11.69 956.69 F115223 1,500 935.48 F114459 -14.73 741.14 F101189 1,500 939.15 F114459 -72.22 529.11 F108902 1.500 943.26 J2258 6.35 979.94 FH14341 1,500 944.69 FiD8674 9.36 934.07 F106445 1.500 945.86 F106445 20.00 1,002.19 F102812 1,500 947.85 F105427 -50.10 658.83 F113866 1,500 957.35 F113866 20.00 1,004.93 F104314 1,500 957.78 F114459 -69.36 547.63 F104580 1,500 967.55 F104580 20.00 1,014.67 F114834 1,500 974.04 F112927 -4.78 739.53 F102813 1,500 974.79 F105427 -51.73 672.50 J1620 1,500 983.94 F108674 7.77 946.32 F112986 1,500 985.07 F114012 -2.55 930.08 F115184 1,500 998.45 F115184 20.00 1,063.15 F106331 1,500 998.63 F106331 20.00 1,133.00 F100255 1,500 1,001.13 F100244 9.81 999.17 V107888 1,500 1,007.63 F105238 8.29 863.67 V102900 1,500 1,014.16 F113700 18.49 1,077.10 F114458 1,500 1,014.24 F114459 -26.06 740.54 F100262 1,500 1,020.97 F100262 20.00 1,088.99 F102599 1,500 1,037.14 F102599 20.00 1,158.60 J1626 1,500 1,038.12 F1D8674 8.58 1.012.12 F113411 1,500 1,043.75 F115178 -70.42 260.77 F104228 1,500 1.048.54 F105427 -37.30 772.53 V101487 1,500 1,052.41 F113478 19.32 1.111.21 FH11291 1,500 1,052.53 F105578 10.05 1,053.96 J1528 1,500 1,054.91 F105427 -25.12 828.13 V102777 1,500 1,057.07 F115279 -29.23 720.72 F117418 1,500 1,057.80 F117861 15.72 1,087,54 F113697 1,500 1,058.53 F113697 20.00 1,210.32 J1526 1.500 1,059.70 F105427 -25.93 828.13 F107281 1,5001,061.29 F105427 -26.20 828.13 F102716 1,500 1.065.09 1 F102716 20.00 1,102.73 Available Fire Flow Critical Node System Pressure Fire Node I Flow to Maintain 0. Critical Node Fire Flow Target 0. Fire ..- Fire Flow at Fire Node F118218 1.500 1,066.64 F118218 20.00 1.123.04 FH02342 1,500 1,070.72 F105578 9.43 1,053.96 F116576 1,500 1,070.63 F105578 9.46 1,055.00 V110931 1,500 1,071.00 V110931 20,00 1,107.09 F110313 1,500 1,079.37 F110313 20.00 1.133.08 F107017 1,500 1,081.40 F115178 9.31 1,019.15 V109028 1.500 1,083.44 V109028 20.00 1,137.58 F110314 1,500 1,083.72 V109028 20.00 1,137.88 FH10579 1,500 1.083.96 F115178 9.26 1,016.62 F118032 1,500 1,085.75 F118032 20.00 1,140.11 F107828 1.500 1,086.17 F117327 17.50 1,325.51 F112446 1,500 1,089,66 F105578 8.84 1,055.96 FH11294 1,500 1,093.02 F105578 8,65_ 1,053.96 F112451 1,500 1,094.10 F105578 8.67 1,055.69 F112450 1,500 1,097.87 F105578 8,48 1,054.09 F105718 1,500 1,098.57 F105718 20.00 1,191.47 F112443 1,500 1,099.56 F105578 8.42 1,054.09 F104579 1,500 1,100.32 F105578 8.42 1,054.81 F117424 1,500 1,101.41 F117424 20.00 1,153.46 F10B263 1,500 1,103.95 F113981 16.92 1,309.74 F112448 1,500 1,105.65 F105578 8.23 1,054.51 F102344 1,500 1,106.87 F102344 20.OD 1,263.55 F101581 1,50D 1,106.96 F114459 -66.68 644.67 F117200 1,500 1,114.26 F117200 20.00 1,171.65 F109602 1,500 1,114.50 F109602 20.00 1,233,96 F113359 1,500 1,115,96 F113361 17.84 1,169.22 F105489 1,500 1,117.38 F105489 20.00 1,173.56 F101405 1,500 1.117.71 F101405 20.00 1,327.139 V102893 1,500 1,.126.32 V102893 20.00 1,203.71 F113377 1,500 1,126.49 F112564 -8.07 875.45 F104703 1,500 1,128.05 F105578 7.45 1.055.00 F112447 1.500 1,131.20 F105578 7.30 1,054.09 F108260 1,500 1.132.02 F117327 16.13 1,325.51 FH02344 1,500 1,133.85 F105578 7.21 1,053.96 F115917 1,500 1,136.13 F115917 20.00 1.193.54 F117862 1,500 1,137.20 F117420 15.35 1.166.31 F113686 1,500 1,145.74 F113686 20.00 1,37786 V102947 1,500 1.147.04 V102947 20.00 1,221,3_7 F101917 1,500 1,149.47 F117327 15.62 1,325.51 FH03753 1.500 1,150.98 J2258 6.34 1,197.51 F109605 1,500 1,151,31 F109602 18.74 1,257.23 J1824 1,500 1,151.94 F105578 662 1,055.85 F107125 1,500 1,152.92 F107125 20.00 1,259.35 J2072 1,500 1.156.30 J2072 20.00 1,320.56 F118055 1,500 1.158.75 F118055 20.00 1,219.97 F113982 1,500 1.159.97 F113981 15.91 1,32720 V107490 1,500 1.160-44 F109602 17.85 1,255.26 F115959 1,500 1,160.80 F115959 20.00 1,253.42 V106064 1,500 1,161.27 F105282 -5.37 1,030.75 F109604 1,500 1.161.74 F109602 17.84 1,256.39 F104137 1,500 1,162.21 F105427 -24,48 914.63 F117178 1,500 1,164 83 F105578 6,20 1,057.08 F115180 1,500 1,167.84 F105282 -5.37 1,036.57 F107860 1,500 1,16820 F107860 20.00 1,213.19 F107952 1,500 1,168.87 F105282 -5.37 1,037.48 V102172 1,500 1,170.62 V102172 20.00 1,325,53 J94 1.500 1,172.66 J94 20.00 1 1.465.10 Fire Node Target Fire Flow Available Fire Flow Ld) 20 -psi at Fire ..• Fire Flow System Critical Node..- Systemo Critical No. Fire Node Flow Maintain 0. J1822 1,500 1,176.59 F105578 5.70 1,055.05 F101714 1,500 1,176.91 F101714 20.00 1.241.20 FH12246 1,500 1,179,21 V101008 18.74 1,215.59 F108381 1,500 1,179.58 V101008 18.39 1.214.36 F106141 1,500 1,180.69 F114453 4.08 1,125,65 J2320 1,500 1,181.36 J2320 20.00 1,294.20 F112243 1,500 1,182.42 F117861 17.47 1,226.48 F114621 1,500 1,183.29 F114621 20.00 1,369.37 F106441 1,500 1,184.67 F106441 20.00 1.242.01 FH10324 1,500 1.185.03 F105278 18.74 1,267.99 V104455 1,500 1,186.26 F105592 18.91 1,232.24 F108379 1,500 1,188.06 F102716 15 49 1,210.70 F113312 1,500 1,189,77 F105578 -36.97 59809 F116556 1.500 1,191.59 F117200 16.95 1,233.33 F100763 1,500 1.191.85 F113471 -6.65 1,058.26 F100245 1,500 1,193.94 F108674 5.26 1,101.14 J2318 1,500 1,194.56 J2318 2D.00 1,296.57 F113683 1,500 1,195,88 F113685 19.22 1.420.58 F115910 1,500 1,201,79 F117420 19.77 1,259.83 F101918 1,500 1,201.85 F117327 14.15 1,330,01 FH02345 1,500 1,204.16 F105578 4,65 1,053.96 F107048 1,500 1,204.85 F107048 20.00 1,289.98 F106693 1,500 1.205,79 F117327 13.88 1,325.51 FH14563 1,500 1,214.60 F108674 -2.76 999.58 F114625 1,500 1,214.83 F114625 20.00 1,459.28 F116044 1,500 1,216.16 F116044 20.00 1,278,69 F101572 1,500 1,218.47 F114459 -58.40 740.47 FH02384 1,500 1,225.04 F105578 3.67 1,053.96 F108261 1,500 1,225.17 F117327 13.28 1.325.51 F103945 1,500 1,229.78 F103945 20.00 1,295.16 V100092 1,500 1.231.93 V100092 20.00 1.312.34 V101257 1,500 1,232,97 F115178 -15,51 481.91 F115859 1,500 1,234,54 F118216 15 84 1,271.51 F106694 1,500 1,236.37 F117327 12.92 1,325.51 F102901 1,500 1,241.40 F102901 20.00 1,604.74 V100193 1,500 1.244,11 V100193 20.00 1,305.33 F112223 1,500 1,244,97 F112223 20.00 1,301.82 F101399 1,500 1,246,01 F101399 20.00 1,450.29 F113928 1,500 1,247.79 F105238 9.96 1,244.07 F118090 1,500 1,248.57 F118090 20.00 1,312.75 F104315 1,500 1,248.87 F114459 -52.89 781.73 F100452 1,500 1,250.15 F108674 -3.47 1,019.76 F100761 1,500 1,253.61 F115178 8.66 1,122.67 F109601 1,500 1,254.54 F109602 14.54 1,311,14 F102745 1,500 1,254.91 F103762 20.00 1,348.20 F100758 1,500 1.256,92 F103762 20.00 1,350.45 J1570 1,500 1,257.96 J2258 6.34 1,302.63 F116552 1,500 1,260,29 F118218 15.06 1,292.84 F112879 1,500 1,264.33 F118055 16.29 1,305.18 F101397 1,500 1,265.90 F114625 19.71 1,510,66 F101400 1,500 1,268.91 F101400 20.00 1,478.41 F103888 1,500 1,271.64 F103888 20.00 1,337.88 F108264 1,500 1,271.66 F108264 20,00 1,586.46 V103618 1,500 1,272.34 V103618 20.00 1,393.98 F106134 1,500 1,274.40 J2320 19.16 1,384.96 V108021 1,500 1,276.95 V108021 2000 1,368.31 J58 1,500 1,279.05 F118055 14.43 1,307.67 Available Fire Flow Critical Node System .. Pressure Fire Node Flow � Maintain 0. Critical Node Fire Flow Target @ �. Fire Node..- ... .. F113329 1,500 1,279.14 F105578 1.83 1,054.23 F105438 1,500 1,279.33 F105438 20.00 1,326.31 J1624 1,500 1,279.61 F108674 -5.92 1.012.12 F113320 1,500 1,283.04 F105578 1.69 1,054.46 F115271 1,500 1,283.30 F115271 20.00 1,337.55 F103351 1,500 1,283.97 F115178 -8.29 574,56 F113497 1;500 1,284.48 F113497 20.00 1,354.87 F115889 1,500 1.288.88 F10557B 1,69 1,060.29 F115861 1,500 1,290.73 F118090 19.66 1,354.66 F102648 1,500 1,293.56 F115092 5.49 1.233.65 FH03916 1,500 1,294-02 FH03916 20.00 1,428.86 FH10278 1,500 1,294.20 F115092 5,87 1,239.00 F100257 1,500 1,294.65 F115092 5.49 1,234.69 F100286 1,500 1,298,57 F107125 17.61 1,387.40 F102687 1,500 1,300,42 J2318 17.88 1,385.88 F113410 1,500 1,302.04 F115178 -73.83 309.81 F113331 1,500 1,307.02 F105578 0.77 1,054.67 F103190 1.,500 1,309 -OB F115092 6.09 1,256.06 F106436 1,500 1,312,51 F115178 -3.26 672.72 F108013 1,500 1,314.47 F100262 15.89 1,365.03 V101280 1,500 1,315.88 F115178 -623 606,39 F100246 1,500 1,315.90 F108674 -1.74 1,096.87 F112822 1,500 1,317.24 F112822 20.00 1,520.86 V110933 1,500 1,321.06 V110933 20.00 1,386.51 J1626 1,500 1,330.59 F108674 -8.26 1.023.76 F107459 1,500 1,331.84 F107459 20.00 1,394.67 F105991 1,500 1,333.42 F105578 -0.27 1,054.38 V106502 1,500 1.336.36 V106502 20,00 1,400.99 V107750 1,500 1,337.96 V108021 17.95 1,412,06 F109793 1,500 1,338,49 F105578 -0.45 1,054.82 F118237 1,500 1,346.79 F118237 2000 1,441.02 F108254 1,500 1,346.93 F117327 8.83 1,313.03 F101916 1,500 1,347.62 F117327 11.05 1,379.57 F113979 1,500 1,349.96 F117327 11.25 1,389.34 F105723 1,500 1,350,49 V103604 17.50 1,599.88 F106698 1,500 1,351.33 F117327 11.21 1,389.34 V100510 1,500 1.352.10 V100510 20.00 1,443.67 J354 1,500 1,354.06 V108021 18.23 1,432.43 FH10604 1,500 1,354-26 F115178 -20.84 480.93 F117207 1,500 1,355.43 F117207 20.00 1,425.45 F100083 1,500 1,355.78 F114012 16.21 1,398.92 F108511 1,500 1,356.57 F117327 10.08 1,359.04 V107746 1,500 1,357.15 V108021 15.98 1,413.08 F115091 1,500 1,357.21 F117327 11.05 1,369.34 F100755 1,500 1,357.68 F115178 9.90 1,346.31 F105273 1,500 1,358.79 F105273 20.00 1,426.09 FH10443 1,500 1,358.97 F115178 -4.35 672.59 F100414 1,500 1,359.34 F115178 -4.33 673.71 F108257 1,500 1,359.74 F117327 8,28 1,31014 F104698 1,500 1,359.99 F105578 -1.34 1,054.09 F106144 1,500 1,360.49 F106144 20.00 1,441.12 V107748 1,500 1,360.82 V108021 15.68 1,413.89 F113894 1,500 1,360.93 F113894 20.00 1.418.60 F116554 1,500 1,361.58 F118219 15.75 1,401.94 F114032 1,500 1,362.31 F114032 2000 1,415.39 F117882 1,500 1,366,83 F117882 20.00 1.591.05 FH10449 1,500 1,367.13 F115178 -10.92 572.89 Fire Node .igpm) FH10789 Target 1,500 Available Fire Flow @ 20 -psi 1,368.60 Fire Flow System F115178 System Critical Node -0.92 Fire Node Flow o Maintain 10 ., 727,56 V105137 1,500 1,372.03 F100262 18.25 1,448.16 F107476 1,500 1,372.06 F107476 20,00 1,446,36 F106980 1,500 1,372.32 F100262 18.26 1,448.55 V105664 1,500 1,372.78 V105664 20.00 1,446.84 F107676 1,500 1,372.93 F107676 20.00 1,542,05 FH03751 1,500 1,373.81 F105238 3.77 865.66 F109598 1,500 1,373.92 F109602 9.88 1,372.41 F113543 1,500 1,374.49 F105282 -11.92 1,167.66 F104994 1,500 1,375.63 F104994 20.00 1,600.05 F113869 1,500 1,376.75 F115184 10,51 1,380.95 F103362 1,500 1,377.89 F115178 -4.77 67370 F105564 1,500 1,378.41 F105564 2000 1,505.53 F110400 1,500 1,378.89 F110400 2000. 1,608.19 J348 1,500 1,378.98 V108021 17.81 1,45445 J346 1,500 1,379,54 V108021 17.66 1,453.71 F110528 1,500 1,380.41 FH03916 15.20 1,450.37 J460 1,500 1,381.30 FH03916 15.41 1.454.44 FH10452 1,500 1,382.21 F115178 -8.93 609.00 F116919 1,500 1,387.28 F116919 20.00 1,463.42 F106132 1,500 1,388.60 F107125 12.34 1,415.96 F10181B 1,500 1,388.92 F114431 1832 1,495.56 F103356 1,500 1,389.37 F115178 -5.07 672.72 V107742 1,500 1,389.61 V108021 16.36 1,450.90 F118105 1,500 1,392.63 V108021 16.92 1,45935 F103357 1,500 1,393.11 F115178 -5.11 674.62 V109271 1,500 1,393.61 FH03916 15.22 1,464.99 F116584 1,500 1,396.79 F116584 20.00 1,467.79 V100386 1,500 1,398.43 V100388 20.00 1,468.54 F107580 1,500 1,399.32 F115178 -1.51 728.12 F118006 1,500 1,400.23 F118006 2000. 1,476.55 FH03157 1,500 1,400.72 FH03157 20.00 1,474.79 J1922 1,500 1,401 63 F110400 19.60 1,621.23 F107884 1,500 1,402.83 V100388 19.69 1,470.81 F118169 1,500 1.404.09 V106021 15.07 1,452.55 FH10444 1,500 1,405.08 F115178 -5.45 672.59 F103397 1,500 1,40565 J2320 12.32 1,434.00 F114988 1,500 1,407.81 F114988 20.00 1,506.56 F101398 1,500 1,408.62 F113686 18.60 1,644,98 V100978 1,500 1,409.88 F115178 -5.53 673.51 FHO3153 1,500 1,411.44 FH03153 20.00 1,464.55 F106913 1,500 1,413.55 F113497 17.76 1.472.85 F103193 1,500 1,413.64 F100262 15.84 1,468.03 F113188 1,500 1,414.10 F113188 20.00 1,501.41 F105706 1,500 1,418.21 F105706 20.00 1,481.69 F117416 1,500 1,418.51 F117416 20.00 1,603.15 F105354 1,500 1,418,59 F115178 6.86 1,118.90 F114293 1,500 1,420.52 F108674 3.43 1,271.66 V108020 1,500 1,421.02 F116919 18.38 1,485.32 V110553 1,500 1,421.68 V110553 20.00 1,491.58 F100415 1,500 1,421.87 F115178 -5.81 674.22 F110529 1,500 1,423.29 FH03916 12.69 1,459.90 F101768 1,500 1,423.86 F116411 0.83 593.03 J1924 1.500 1,425,15 F110400 18.09 1,608,11 J1074 1.500 1,426.07 J1074 20.00 1,499.91 F103195 1,500 1,426.87 F103195 2000. 1,532.14 V106501 1,500 1,428.38 V106501 20.00 1,497.74 Available Fire Flow Fire Node Fire Node Target Fire Flow Fire Flow @ �. at Fire Node Critical Node System .. Flow � Maintain 0-p F102650 1,500 1,430.39 F100262 1458 1,473.00 F100261 1,500 1,430.97 F100262 14.52 1,473:00 F112984 1,500 1,435.12 F112984 20.00 1,522.56 F103361 1,500 1,436.10 F115178 -6.17 673.60 F105221 1,500 1,436.52 F105221 20.00 1.533.54 F102600 1,500 1,436.56 V103604 15.03 1,599.65 F107367 1,500 1,436.59 F107367 20.00 1,643.39 J2880 1,500 1,437.54 F105238 -0.22 776.74 J280 F102649 1,500 1.500 1,437.90 1,438.93 F115178 F102649 -10,89 20.00 598.94 1,533,52 FH10442 1,500 1,441.31 F115178 -6.32 672.59 V105760 1,500 1,446.36 F115178 -2.41 729.15 F101715 1,500 1,448.10 F101715 20.00 1,534.42 F112252 1.500 1,448.43 F112252 2U0 1,529.85 F120368 1,500 1,448.72 F115178 -17.75 538.19 J1070 1,500 1,448.86 FH03157 19.14 1,518.37 F102768 1,500 1,448.92 V101654 15.02 1,478.29 F100283 1.500 1,449.61 F114453 3.59 1,376.52 F102312 1,500 1,449,68 F114851 7.86 1,422.27 F106330 1,500 1,450.12 V103604 14.61 1,59920 V104056 1,500 1,451.24 F115178 -6.54 673.41 FH03937 1,500 1,451.91 F115178 -11.33 598.50 F112985 1,500 1,453.01 F112985 20.00 1,53901 F100416 1,500 1,453.10 F115178 -6.59 673.10 F114291 1,500 1,453.44 F108674 -7.87 1.122.52 F104569 1,500 1,454.51 F104569 20.00 1.723.42 F115320 1,500 1,456.79 V100388 1927 1.524.05 F113427 1,500 1,457.34 F115178 -7.72 656-19 F106143 1,500 1,457.66 F106143 20.00 1,555.86 F100430 1,500 1,457.83 V100388 19.13 1,524.05 F102484 1,500 1,459.02 F102484 20.00 1,531.89 F110530 1,500 1,464.44 FH03916 9.79 1.462.03 FH03756 1,500 1,464.85 J2258 6.33 -- F106385 1,500 1,466.51 F106385 20.00 1,550.52 F108375 1,500 1,46720 F108375 20.00 1,533,50 F112221 1,500 1,472.31 F118219 17.98 1,534.26 F115334 1,500 1,472.68 F115334 20.00 1,557.36 F117145 1,500 1,473.47 V108021 14.81 1,521.89 F101713 1,500 1,473.58 F101713 20.00 1,558.32 V101258 1,500 1,474.01 F115178 -26.36 481.34 F100405 1,500 1,474,24 F115178 -8.15 656.32 F114321 1,500 1,475.59 F109602 7.01 1.435.97 F107457 1,500 1,476.18 F107457 20.00 1.546.83 F102571 1,500 1,477,63 F102571 20.00 1,562.92 V108019 1,500 1,477.84 F116919 17.04 1,533,69 F102683 1,500 1,479,61 F115178 -7.25 672.72 F103365 1,500 1,481.86 F115178 -8.35 656.32 F102478 1,500 1,482.93 F115178 -8.37 656.32 F118915 1,500 1,485.60 F115178 -8,44 656.32 F110531 1,500 1,485.63 FH03916 8.42 1,464.99 F105673 1,500 1,485.91 F105578 -6.50 1,054.09 F100772 1,500 1,485.93 F115178 8.79 1,346,48 F103366 1,500 1,490.15 F115178 -8.56 656.32 J1422 1,500 1,490.89 J1422 20.00 1,605.10 F102042 1,500 1,490.97 F105578 -6.65 1,055.63 FH10578 1,500 1,491.19 F115178 4.52 1,016.62 FH14510 1,500 1,493.35 F115178 -5.88 692.19 Fire � de .(Op�� Target Fire Flmv Fire Flow @ �. at Fire Node .. AvailabJe Fire Flow Critical Ne System Pressure Fire Node Flow � Maintain 0. Critical Node .. V110940 1,500 1,494.18 V110940 20.00 1.593.33 F105348 F118049 1.500 1,500 1,494.90 1,496.79 F115178 F113497 4.48 17,38 1,017.98 1,556.13 F107131 1.500 1,497.73 F102344 16.13 1,618 21 F111559 1,500 1,499.36 F111559 20,00 1,849.08 V103282 1,500 1,499.84 V103282 20.00 1,571.49 7tD y t Hilldale r a ou y I t�° L� 1 u s ^ r o E F z -0wns1ff0)St erry Q u n u - z a 5� z N'° ka C E V0 i U LEGEND 1 r yea ca CITY LIMITS E �� PLANNING BOUNDARY O 0-500 GPM r� 500-1000 GPM O 1000-1500 GPM i ! 1,500+ GPM Mi 2037TOWNSHIP - r PRESSURE PLANE Map Source: City of Fayetteville GIS are • FIRE FLOW ANALYSIS Data Source: InfoWater Hydraulic Model E Ode EXHIBIT C4.2 TABLE C4.2 Phase III Township Pressure Plane Fire Flow Results (2027 -2037) Fayetteville Water Master Plan Available Fire Flow Fire ••- Fire Node F108209 TargetFlow Fire Flow 1,500 Fire Flow i. at Fire Node .. 1,041.65 Critical Node . F114817 System .. Pressure 15.66 to Maintain 0. Critical Node .. 1,102.44 F112924 1,500 1,153.99 F112924 20.00 1,367.09 F106404 1,500 1,202.69 F106404 20.00 1,303.66 F106407 1,500 1,257.38 F106407 20.00 1,580.30 V106209 1,500 1,269.74 F114817 -4.29 1,118.33 F100093 1,500 1,344.66 F112924 19.90 1,597.66 F102290 1,500 1,357.27 F104945 19.12 1,545.93 13280 1,500 1,362.65 J3280 20.00 1,638.46 F108212 1,500 1,403.66 F114817 17.28 1,517.42 F115015 1,500 1,468.20 F106407 16.97 1,698.67 V108165 1,500 1,488.65 V108165 20.00 1,639.62 F107715 1,500 1,572.21 F106404 16.62 1,660.22 F106402 1,500 1,573.56 F106402 20.00 1,697.83 FH02198 1,500 1,617.13 F106407 12.45 1,686.37 F106406 1,500 1,683.85 F106407 12.96 1,774.96 FH11961 1,500 1,738.07 F114817 9.48 1,728.13 V100262 1,500 1,757.95 F106407 13.23 1,873.97 F102287 1,500 1,760.21 F114817 8.67 1,736.19 FH11960 1,500 1,888.53 F114817 13.43 1,954.62 1790 1,500 1,965.10 V108165 13.07 1,975.97 F110614 1,500 1,995.44 F106407 7.52 1,892.64 F112327 1,500 2,051.52 F106407 6.54 1,914.13 F102310 1,500 2,074.54 F104944 18.29 2,214.85 FH10097 1,500 2,134.30 J3280 -1.74 1,807.96 FH03942 1,500 2,211.02 F106407 13.48 2,364.76 J2114 1,500 2,232.46 F106407 13.10 2,365.75 F112337 1,500 2,378.44 F106407 10.83 2,365.78 F112339 1,500 2,386.56 F106407 10.66 2,365.76 F112335 1,500 2,492.88 F106407 8.45 2,379.60 F112344 1,500 2,531.83 F106407 -8.23 1,932.52 F112331 1,500 2,801.97 F106407 1.38 2,395.59 i S Askew Or 0 c- VJ Ravensw00d L t c �3p c S11 4 Q* m a c m fl n w 1 LEGEND =� CITY LIMITS PLANNING BOUNDARY 0-500 GPM 0 500-1000 GPM 0 1000-1500 GPM 0 1,500+ GPM N 2037 SOUTH MOUNTAIN PRESSURE PLANE Map Source: City of Fayetteville GTS FIRE FLOW ANALYSIS Data Source: [nfoWater Hydraulic Model EXHIBIT C4.3 TABLE C4.3 Phase III South Mountain Pressure Plane Fire Flow Results (2027 - 2037) Fayetteville Water Master Plan Fire Node ID V106075 Target Fire Flow .. 1,500 Fire Flow @ 20 -psi at Fire Node .. 1 1,173.79 Available.. Critical Node . V106075 System .. Pressure 20.00 Flow to Maintain i . Critical Node .. 1,221.03 F100545 1,500 1,199.83 F100545 20.00 1,261.77 F100542 1,500 1,203.88 F106202 19.60 1,262.69 F100544 1,500 1,222.69 F106202 19.41 1,281.40 FH10465J 1,500 1,225.31 FH10465 20.00 1,275.77 FH10468 1,500 1,227.88 F106202 18.01 1,277.80 F100543 1,500 1,241.97 F106202 18.86 1,298.32 F106024 1,500 1,252.61 F106202 14.19 1,278.63 F108596 1,500 1,257.36 F106202 13.43 1,278.63 F108614 1,500 1,258.98 F106202 13.06 1,277.93 F108597 1,500 1,259.48 F106202 13.05 11278.39 F108615 1,500 1,269.61 F106202 11.34 1,277.93 F105313 1,500 1,273.06 F106202 18.69 1,330.30 F100520 1,500 1,288.03 F106202 8.97 1,281.70 F113395 1,500 1,294.31 F100545 14.99 1,327.33 F100541 1,500 1,305.76 F106202 14.17 1,333,18 F107964 1,500 1,311.90 F105311 14.43 1,339.40 F102485 1,500 1,427.73 F106202 5.16 1,394.21 F107965 1,500 1,459.24 F105311 9.96 1,458.96 FH10460 1,500 1,465.05 F106202 8.S5 1,454.24 F116098 1,500 1,466.01 F106202 14.35 1,499.95 F107971 1,500 1,466.58 F100545 10.62 1,471.38 FH10409 1,500 1,467.90 F100545 11.50 1,479.55 F107968 1,500 1,469.55 F100545 11.57 1,481.78 F100546 1,500 1,470.10 F106202 7.86 1,454.21 F100504 1,500 1,480.81 F100545 13.11 1,505.58 F113397 1,500 1,481.07 F100545 8.67 1,470.86 FH10410 1,500 1,488.25 F106202 12.55 1,508.36 F100502 1,500 1,492.96 F100545 10.51 1,496.92 F106025 1,500 1,511.72 F100545 8.61 1,500.78 F100507 1,500 1,532.96 F100545 0.55 1,461.65 F103503 1,500 1,538.77 F100545 5.29 1,501.58 F100506 1,500 1,567.33 F100S45 -2.37 1,473.03 F100503 1,500 1,576.66 F100545 0.76 1,503.73 F100505 1,500 1,610.32 1 F100545 -4.90 1,494.65 F102482 1,500 1,685.20 F100545 -12.39 1,509.23 F103488 1,500 1,742.98 F100545 -16.64 1,529.91 F100377 1,500 1,773.39 F100545 -14.94 1,566.60 W a 0 Z W w J Y Q � I z D �a m a =wrn� O J J IL Q V aCCQH � LA Ln g LU i cc ir a4 aae;S F�r-l7 g�oa nawX a0 Ln o ccW O 7} N ti �oo� r - - - Ja O O o Ln r i ... __ __,_ 1 1 1 I Lo V r BqV- as Keay TABLE C4.4 Phase III Mt. Sequoyah Pressure Plane Fire Flow Results (2027 - 2037) Fayetteville Water Master Plan Fire Node F108266 TargetFlow Fire Flow .. 1,500 Available Fire Flow i. at Fire Node .. 1,114.35 Fire Flow Critical Node F108266 System .. Pressure 20.00 Fire ... to Maintain i Critical Node .. 1,236.40 F105561 1,500 1,225.28 F105561 20.00 1,426.95 F102952 1,500 1,246.59 F102952 20.00 1,290.57 F106332 1,500 1,283.56 F106332 20.00 1,330.07 F113296 1,500 1,311.15 F113297 20.00 1,431.28 F110486 1,500 1,313.75 F110486 20.00 1,361.79 J2092 1,500 1,319.94 12092 20.00 1,503.15 F104458 1,500 1,329.11 F104458 20.00 1,426.37 J1584 1,500 1,329.82 11584 20.00 1,383.23 F102570 1,500 1,355.97 F114411 12.74 1,376.71 FHO2377 1,500 1,368.90 FH02377 20.00 1,429.67 F111800 1,500 1,372.98 F111800 20.00 1,459.93 F101751 1,500 1,378.61 F101751 20.00 1,631.38 F107311 1,500 1,406.62 F107311 20.00 1,455.75 F104971 1,500 1,407.53 F110486 14.80 1,433.01 F114413 1,500 1,422.56 F114413 20.00 1,595.64 F106328 1,500 1,430.55 V102658 0.29 1,360.77 F118549 1,500 1,460.05 F118549 20,00 1,557.08 F118515 1,500 1,487.30 F118549 17.92 1,565.24 F118513 1,500 1,491.31 F118549 19,55 1,585.45 F102360 1,500 1,492.82 F110486 12.02 1,503.41 F101677 1,500 1,495.53 J2092 17,32 1,640.36 F113971 1,500 1,496.72 F113971 20.00 1,592.19 F102569 1,500 1,497.50 J2092 16.67 1,628.45 F112375 1,500 1,499.12 F112375 20.00 1,629.01 . . . . Gq,mge o LU Lu v, Ln z a « ¥ < DCL IL� © m 2 �m<� (■ 2 I N§/� A10 L0 iLUk �w LD(/R2zoo f '{ iT0 uCL0A \e@oe y I } � e ; J (B� 404f s P 11! " Pa. .0 . j.r e ' . � gnz),- \\! . � _ f d $ . p uo.�. .m2� wli® 2 qr� , ®- � - �__ _ - Ln -- 10 \� �! . u, - (�, PU km 2Z) ° \\ `LLIJ- a ®wCA 6_ U) co 0 <reIm®Cl TABLE C4.5 Phase III Gulley Pressure Plane Fire Flow Results (2027 - 2037) Fayetteville Water Master Plan Fire Node ID F102929 Target Fire Flow .. 1,500 --Available Fire Flow i. at Fire Node 648.00 Fire Flow Critical Node . F102929 System .. Pressure 20.00 .. Fire Flow to Maintain Critical Node .. 716.16 FH11892 1,500 652.64 FH11892 20.00 765.77 F102175 1,500 662.66 FH11892 19.47 769.36 F102928 1,500 667.31 J1612 18.73 732.13 F104866 1,500 668.92 F104866 20.00 740.65 F100231 1,500 686.17 F100231 20.00 756.85 F103172 1,500 760.82 F103172 20.00 860.70 F102644 1,500 764.64 F102644 20.00 864.56 F100198 1,500 765.14 F103172 20.00 865.76 F114911 1,500 766.05 11612 16.66 820.47 F102173 1,500 774.02 F102173 20.00 914.80 FH11886 1,500 790.47 FH11886 20.00 875.82 F114247 1,500 809.21 F104866 12.65 828.36 F107299 1,500 820.28 F107299 20.00 909.80 FH11885 1,500 848.26 F104866 11.98 863.06 F113278 1,500 908.65 F107299 18.44 989.59 F114454 1,500 962.40 F114454 20.00 1,057.19 FH11884 1,500 1,004.82 F107299 16.55 1,071.88 F115246 1,500 1,041.06 F115246 20.00 1,156.72 F112214 1,500 1,044.18 F112214 20.00 1,115.52 FH10400 1,500 1,046.86 F112214 20.00 1,118.67 F103182 1,500 1,078.84 F103182 20.00 1,195.89 F107313 1,500 1,120.29 1`107313 20.00 1,297.53 FH11168 1,500 1,134.15 F101647 17.93 1,246.81 F104865 1,500 .1,156.55 F102173 14.06 1,219.16 F101650 1,500 1,167.95 F101647 14.77 1,233.59 FH10401 1,500 1,190.12 FH10401 20.00 1,396.91 F106124 1,500 1,199.27 F101647 13.49 1,247.71 F114303 1,500 1,202.53 11598 16.25 1,319.05 F108590 1,500 1,211.79 1`101647 16.69 1,311-22 J1016898A 1,500 1,219.70 J1016898A 20.00 1,397.96 F100204 1,500 1,246.61 F103172 8.22 1,222.14 F100375 1,500 1,254.60 F114110 15.15 1,397.92 11608 1,500 1,310.36 J1608 20.00 1,466.25 F116867 1,500 1,333.74 F114110 14.74 1,471.25 F102673 1,500 1,349.64 F114110 15.18 1,511.25 FH11167 1,500 1,357.15 F101647 14.91 1,435.78 J3256 1,500 1,364.68 F114110 14.88 1,508.13 11606 1,500 1,367.56 11606 20.00 1,536.54 F109596 1,500 1,367.75 F114110 14.93 1,512.21 Fire Node ID F112746 Target Fire ..... 1,500 Fire Flow 1,370.50 Available Fire Flow •• F101647 System 14.60 .. Fire Node Flow to Maintain i .d�. (gpm) 1,444.48 FH02778 1,500 1,379.18 J1016898A 11.07 1,397.82 F112302 1,500 1,380.84 F114110 14.41 1,508.48 F112110 1,500 1,381.13 F114110 7.43 1,308.34 F114244 1,500 1,395.57 F114244 20.00 1,519.96 FH12090 1,500 1,398.00 FH12090 20.00 1,552.02 FH12066 1,500 1,399.25 J1598 9.43 1,388.86 F116352 1,500 1,401.62 F116352 20.00 1,742.86 F114245 1,500 1,403.66 F114245 20.00 1,540.41 F112747 1,500 1,407.31 F101647 12.23 1,442.83 FHO2968 1,500 1,413.83 FH02968 20.00 1,528.35 F102388 1,500 1,414.94 F107299 15.90 1,497.44 F114304 1,500 1,414.98 11598 9.00 1,396.50 F112749 1,500 1,416.08 F101647 11.69 1,442.83 F112303 1500 1,423.08 F114110 13.03 1,508.48 J3260 1,500 1,427.16 F114110 13.86 1,542.59 F102407 1,500 1,433.63 F107299 9.29 1,424.17 FH14443 1,500 1,447.76 FH14443 20.00 1,587.36 F109159 1,500 1,450.51 FH02968 18.93 1,553.95 F100203 1,500 1,460.03 F100203 20.00 1,694.52 F107687 1,500 1,462.72 F107687 2000. 1,592.89 F106119 1,500 1,466.05 F106119 20.00 1,602.48 F109570 1,500 1,469.26 J1016898A 5.85 1,398.29 FH12084 1,500 1,485.72 FH12084 20.00 1,620.48 F114252 1,500 1,488.79 F114252 20.00 1,669.67 F108591 1,500 1,493.59 F101647 12.33 1,532.88 FH12088 1,500 1,495.06 FH12088 20.00 1,624.76 F102425 1,500 1,495.82 F102425 20.00 1,630.03 V.1V0 a MEpr1i Phase III Goshen Pressure Plane Fire Flow Results (2027 - 2037) Fayetteville Water Master Plan Fire Node FHO2787 Target Fire Flow .. 1,500 Available Fire Flow at Fire Node .. 343.63 Fire Flow Critical Node . FHO2787 System .. Pressure 20.00 Fire ..- Flow to Maintaini . Critical Node- .. 808.33 J1726 1,500 497.10 FH02787 17.36 808.46 V100450 1,500 509.28 FH02787 17.66 861.35 FH03468 1,500 669.68 F112076 -48.44 389.62 F114165 1,500 750.30 F112076 -54.42 425.63 F105411 1,500 814.21 F105412 14.58 826.77 F100885 1,500 865.78 F105412 2.17 826.92 F114159 1,500 903.97 F105412 9.27 897.76 F114164 1,500 956.60 F112076 -66.47 510.82 F114162 1,500 1,015.63 F114149 10.03 1,017.69 F107398 1,500 1,050.80 F107400 19.24 1,364.23 F114163 1,500 1,143.87 F112076 -67.64 609.32 FH10182 1,500 1,174.40 FH10182 20.00 1,551.81 F100199 1,500 1,188.28 F107400 17.92 1,470.29 F109099 1,500 1,238.38 F114149 5.17 888.95 F103170 1,500 1,263.43 F114233 13.27 1,367.99 F109098 1,500 1,267.18 F114149 4.68 888.53 F103169 1,500 1,292.50 F114233 12.33 1,366.08 F100873 1,500 1,302.24 F114149 6.92 1,018.61 F114113 1,500 1,321.02 F114233 11.45 1,366.37 F110500 1,500 1,326.28 F114149 3.81 890,51 FH02947 1,500 1,329.45 F114149 3.73 889.24 F106758 1,500 1,378.04 FH02787 4.44 1,096.07 FH10236 1,500 1,380.62 FH02787 4.63 1,104.43 F109093 1,500 1,416.05 F114149 2.17 889.01 FH02948 1,500 1,419.92 F114149 2.05 888.41 F109104 1,500 1,427.48 F114149 1.97 888.39 F109096 1,500 1,443.04 F114149 1.64 888.53 F109112 1,500 1,469.77 F114149 1.10 888.67 F109106 1,500 1,482.66 F114149 0.95 889.13 ' Pot o L Z �y e w CC S w n � Q 2 w Q Xw m z _ "i D _ D '^ x m w w r. H ID in vi a — z n aIL a o�v O Q o 0 U 0-0 ry 90 Z M1 ;N C d p i�• z b r - L � w I C C SS+7a%4+ua+jb '� J' Im ti r�' w as ID r i Rd ID Ma ey N9 x r' A C � w ,O r9 , ng - :.Y n - i� m L TABLE Dl Existing Low Pressure Analysis Results Fayetteville Water Master Plan ID F116411 Demand .. 0.56 Elevation 1,540 Pressure 13.54 F111283 0.06 1,539 14.03 F111287 0.08 1,538 14.23 F111286 0.45 1,538 14.23 F113245 0.34 1,536 15.30 F107071 0.13 1,533 16.52 F105909 0.30 1,533 16.61 F114149 0.45 1,508 17.01 F115094 0.00 1,538 17.65 F112151 0.00 1,526 19.44 F104513 0.48 1,524 20.43 F111727 0.90 1,523 20.92 F102869 0.00 1,523 21.08 F109151 0.16 1,500 21.12 F101771 0.00 1,521 21.82 V102853 0.50 1,519 22.64 F115032 0.36 1,519 22.87 FH11625 0.00 1,518 23.29 F101723 1.38 1,517 23.81 F115093 0.00 1,522 25.00 FH02787 '',' 0.00 1,584 25.62 F113961 1.04 1,510 26.29 F105981 0.36 1.510 26.58 V108930 0.18 1,507 27.69 V100450 5.03 1,579 27.96 F112152 0.56 1,506 28.20 V108568 0.18 1,505 28.67 J1726 0.00 1,577 28.76 F115030 0.26 1,505 28.92 FH10826 0.00 1,624 29.38 F113493 0.09 1,499 30.57 F103824 0.08 1,621 30.83 F117026 0.00 1,507 31.07 F114110 008 1,565 31.65 V111367 0.11 1,619 31.79 F114154 0.00 1,618 32.20 F105891 0,26 1,497 32.34 F105890 0.16 1,496 32.50 V110649 0.21 1,562 32.77 F112927 0.00 1,495 32.77 F101473 0.65 1,495 33.07 F116352 0.86 1,560 33.92 F115028 1.14 1,492 34.48 F114401 0.00 1,492 34.55 F106265 0.80 1,491 34.78 F115847 0.00 1,498 35.00 F105238 0.29 1,478 35.06 F112758 0.00 1,489 '35.32 F101830 1.44 1,489 35.77 ID F111729 Demand .. 0.06 Elevation 1,489 Pressure 35.77 J842 0.00 1,488 35.95 F116370 0.00 1,488 36.07 J2962 0.00 1,555 36.11 F105494 0.00 1,487 36.41 F101749 0.44 1,487 36.54 F105725 0.35 1,487 36.79 F114112 0.00 1.552 37.06 F114597 0.33 1,485 37.15 F110926 0.34 1,484 3764 F107393 0.47 1,485 37.64 F101768 0.09 1,484 37.66 V105592 49.96 1,485 37.69 F110278 0.28 1,484 37.82 F117327 0.00 1,484 37.82 F116394 0.00 1,483 37.92 F117111 0.00 1,484 37.92 F117410 0.00 1,483 37.96 F117931 0.00 1,483 37.98 J1760 0.60 1,483 38.01 F101501 0.09 1,483 38.10 F108455 0.09 1,483 38.18 F108454 0.21 1,483 38.18 F101517 0.68 1,483 38.20 F112767 1.26 1,483 38.24 FH14189 0.00 1,483 38.31 V106606 2.37 1,483 38.32 F101948 0.92 1,482 38.33 F118099 0.00 1,490 38.52 F112369 3.64 1,549 38.61 F114393 0.00 1,482 38.70 F105971 0.13 1,481 38.73 F105987 1.63 1,718 38.87 V103604 0.25 1,482 38.91 F117326 0.00 1,481 39.01 F101750 0.32 1,481 39.12 F113981 0.00 1,481 39.13 F112304 0.52 1,548 39.21 F118113 2.29 1,481 39.28 F101506 1.06 1,480 39.33 F108543 0.30 1,481 39.35 F115846 0.00 1,488 39.35 F101952 6.95 1,480 39.42 F103421 0.35 1,480 39.49 F118196 0.82 1,479 39.74 F108544 0.00 1,480 39.79 F118021 0.00 1,479 39.90 F102901 10.55 1,478 39.93 F114407 18.26 1,703 39.97 524 t {f lrl� i Lk use sk• �! A. E " Mae" R d J m n•: r a o � ' _i B; a o -v '^ N N W C> w o O W � " ¢ N Q J 0 ^ W m r cr Z NO � :D O — v X m Lu Lu 4n oc uJ F = a O N dt }1 } ~ J O O J LJ d O N Mae" R d J m n•: r a o � ' _i B; a OWN" RON 014 Phase 1 Low Pressure Analysis Results 2017-2022 Fayetteville Water Master Plan Demand 1`116411 1.12 1.540 11.96 F111283 0-32 1,539 12.51 F111287 035 1,538 1271 F111286 0.94 1,538 12.71 F113245 0.77 1.536 13.79 F107071 0.43 1,533 15.02 F105909 0.70 1,533 1527 F114149 0.80 1,508 15.57 F113493 0.22 1,499 17.03 F112151 0,22 1.526 17.90 F104513 0.99 1,524 18.24 F109151 0.32 1,500 1927 F111727 2,11 1,523 19.86 F102869 0.00 1,523 20,12 F101771 0.00 1.521 20.70 V102853 1.46 1,519 2086 F115032 057 1,519 21.76 FH11625 0.00 1,518 22.22 F101723 2.21 1,517 22.74 F113961 1,90 1,510 23.87 V10893D 0.52 1,507 26.29 F112152 1 57 1,506 26.73 F105238 0..54 1,478 27.05 F115030 1,08 1,505 27,24 V108568 D 51 1,505 27,24 F116050 079 1,476 27,29 FH10826 0.00 1,624 26.74 F105981 065 1.510 28.74 FH02767 0.00 1,584 28..98 F115094 0.00 1,536 29.35 F103824 0.20 1,621 30.19 F105494 007 1,487 30.24 1`112758022 F105891 1.00 1,489 1,497 30.33 30.72 F105890 093 1,496 30,87 F116370 0.22 1,488 31.08 V111367 026 1,619 31.14 V100450 814 1,579 31-32 F101473 1.27 1.495 31.52 F114154 0.07 1,618 31.56 F114597 0.75 1,485 32,10 J1726 0.07 1,577 32,12 F112927 022 1,495 32.37 F115028 250 1,492 32.68 F108455 0-36 1,483 33.19 F108454 0.55 1.483 33.19 F114401 0,22 1,492 33.19 F113921 0.88 1,462 33.60 F115178 0.07 1,448 33..94 1`106265 1 36 1,491 34.17 F113920 015 1,461 3430 F101830 2.98 1,489 34.45 F111729 0.76 1,489 3446 F101948 131 1,482 34.51 J842 0.22 1,488 34.75 F105971 0.44 1,481 34.91 F101749 0.93 1,487 35.20 F101952 1:93 1,480 35.54 1`117327 0,00 1,484 35.61 Demand F116394 0.00 1.483 35.71 F112767 2.70 1,483 35.71 F117111 000 1,484 35,74 F117410 0.00 1,483 35,75 F117931 0.00 1,483 35.77 F102901 1.71 1,478 36.00 F101768 0.37 1,484 36.04 FH14189 0.00 1,483 36.10 F105578 2,06 1,472 36.10 F101204 0.35 1,476 36.12 F101271 1.67 1,477 36.18 F110926 D.77 1,484 36.23 F110278 1.11 1,484 3624 F102036 0.52 1,477 36,27 J1760 0.97 1,483 36.50 F101501 0.37 1,483 36.57 F113609 0.49 1,475 36.68 F113310 030 _ 1,471_ 36.71 F105725 0J8 1.487 36.72 1`101517 1.31 1,483 36,78 Fl17326 0.00 1,481 36.80 F113981 0,00 1,481 36..92 F115093 0.00 1,522 37,14 F104655 2.24 1,476 37.14 F102591 0.43 1,476 37,23 F114393 0.00 1,482 37.26 FID1953 2.13 1,475 37.41 F107393 0.98 1,485 37.62 V105592 0.23 1,485 37.69 V106606 1,03 1.483 37.77 F101506 1.92 1,480 37.81 F101750 0.74 1,481 37.82 F101956 0.93 1.474 3792 F118113 032 1.481 38.08 F118120 0.00 1,478 3811 F104656 0.22 1.474 38.22 F11B196 1.53 1.479 38.34 J2276 102 1,473 38.43 F101954 1.27 1,473 38.57 F118021 0.07 1,479 38.69 F117109 000 _ 1.477 38.73 F108543 0.55 1,481 38.81 F116560 0.00 1,476 38.81 F1011313 0.00 1,476 38.92 F101747 1.49 1,478 38,95 V103604 0.62 1,482 38.97 F104664 1.25 1,472 39.06 F108544 0.07 1,480 39.08 F101484 0.30 1,478 39.10 1`115872 0.00 1,476 39.13 F114158 0.07 1.454 39.14 F113101 1.99 1,476 39,17 F105669 0.22 1,471 39.22 FH11511 0.00 1,477 39.26 J2126 0.00 1.475 39.36 J94 1.16 1,478 39,37 F108264 0,76 1,474 39,49 F114110 0.20 1,565 39.57 7105987 2.83 1,718 39,61 p ~ Lrl (y1 FQE Z w o O 'L'S 3 _j < N w 07 Z .y ::D ON Ln Z m w w W a r0 a- n- < d o N ';t O Q� V a o N _ 110 00 z r. ,a x v a 3 0 i' a P m l�' 9 S71,301,P0,100- P 7y; h����� ffffff��ML• ij i�rw S •. 3 r' .yI r 9 �Ir r •'�•'fd+ l� l 5 s'�zS. i;f�Lr�+i pa,,Lgl��.01= 'JI . �������� 1l11�7: cr•a �� lye r 'MZ '47►R A "ung I 1� f� � �dl� In 1f� frrr,_ TABLE D3 Phase II Low Pressure Analysis Results 2022-2027 Fayetteville Water Master Plan F113493 Demand 026 7499 10 46 F116411 1.31 1,540 11 55 F111283 040 1,539 1164 F111287 044 1,538 11.84 _ F111286 111 1.538 1184 F113245 0.92 1,536 12.92 F107071 0 53 1.533 1417 F105909 084 1,533 1455 F114149 0.92 1,508 15.60 F1 12151 0.30 1,526 17.44 F104513 1.16 1,524 _ 17,55 FI 09151 0.38 1,500 1929 F111727 2,52 1.523 19,33 F102869 0.00 1523 19.56 Fl 01771 000 1,521 2015 V102853 1 81 1.519 2024 F116050 090 1.476 20.72 F115032 064 1.519 21 20 FH71625 000 1,518 2166 F101723 2,48 1,517 2218 F113961 218 1,510 2308 F115178 0.10 1,448 2459 F105238 0,62 1,478 2533 V108930 0.63 1.507 25.53 F112152 1.91 1.506 2620 Vl08568 0,62 1.505 2644 F115030 1,36 1,505 26..66 FHO2767 0.00 1.584 26.76 FH 10826 000 1,624 2822 F105494 010 1.487 28.70 V100450 916 1,579 2911 R12758 0.30 1,489 2922 F105981 0.75 1.510 2946 F103824 0.24 1,621 29.66 J1726 0.10 1.577 29.90 F116370 0.30 1,488 2997 F105891 1.36 1,497 _ 30.17 F105890 1 19 1.496 30,32 F101473 1.48 1,495 3059 V111367 030 1.619 3062 F114597 0.89 1,485 3093 F114154 010 1.618 31 03 F113921 _ 1,01 1,462 31 88 F108154 0,67 1.483 32.04 F106455 0.45 1,483 3204 F115028 2.96 1,492 3205 F114401 0.30 1,492 3245 F113920 0.19 1,461 3258 F101948 1.97 1,482 33.45 F112927 0.30 1,495 33,55 F105971 0.54 1,461 3386 F101830 3.50 1.489 33.89 F111729 100 1,489 33.90 F105578 220 1,472 3436 F101749 1.09 1,487 3447 F101952 2.22 1,480 34.48 F106265 1.53 1,491 3461 F112767 318 1,483 3481 J842 030 1,488 34,81 F102901 1.97 1,478 34,93 F117327 0.00 1,484 34.95 F101204 Demand 0.44 1,476 34.98 F113310 035 1.471 34 98 F116394 000 1.483 35,04 F101271 1.93 1,477 3506 F117410 goo 1,483 3508 F117931 600 1.483 3511 F102036 063 1,477 35,14 F117111 0..00 1,484 3526 FH14189 0.00 1,483 3543 F110926 0,92 1,484 3545 F113609 0.60 1,475 3553 F110278 140 1,484 35.60 J1760 1,09 1.483 3564 F101768 0,47 1.484 35.67 F101501 0.47 1.483 3570 F101517 151 1.483 36.00 F104655 2.57 1,476 3610 F117326 0.00 1,4B1 36-14 F102591 0.53 1,476 3619 F113981 0.00 1,481 36.25 F101953 244 1,475 36 34 F114393 000 1.482 3643 F101956 109 1,474 1 3688 F101505 2 21 1,480 3694 F101750 088 1.481 37_10 F104656 030 1,474 37.18 J2276 1 20 1.473 3737 F118120 0.00 1,478 3745 F101954 1,48 1,473 3751 F105725 093 1,487 3766 F118113 038 1,481 3793 F104664 1,45 1.472 3802 F116560 000 1,476 38,14 F105669 030 1.471 38,16 F101747 172 1,478 3821 F101813 0.00 1,476 38,26 F117109 000 1,477 3826 F114110 024 1,565 38 28 V106606 1 17 _ 1.,483 38 2B F101484 038 1,478 38 35 FH11511 0.00 1.477 38 39 F118196 1.77 1,479 38.45 F115672 0.00 1.476 3847 F118021 010 1,479 3855 F107393 114 1,485 3860 V105592 0.31 1,485 38 68 J2126 000 1.475 38.70 F113101 223 1,476 3870 F108264 1 00 1.474 3892 F114158 010 1,454 3916 J94 135 1,478 3925 F108543 0.64 1,481 39.32 F108263 000 1.474 39 33 V110649 048 1.562 39,39 F104663 0.58 1,469 3940 F108544 010 1,480 39,44 F113611 0.44 1,466 3979 F105987 3.23 1,718 39 87 F101917 0.00 1,472 3988 F117346 0.58 1,476 39,89 TABLE D4 Phase III Low Pressure Analysis Results 2027-2037 Fayetteville Water Master Plan F113493 Demand 030 1,499 7.37 F116411 1.39 1,540 1269 F111283 0 51 1,539 1316 F111286 1.19 1.538 13.36 F1112B7 0 54 1,538 1336 F113245 1 01 1.536 14.43 F114149 0.93 1,508 15.40 F107071 0.63 1.533 1567 F105909 0.93 1,533 15.88 F116050 092 1,476 1763 F115178 0.13 1,448 1801 F105238 0 65 1,478 1820 F104513 1 24 1,524 1860 F112151 0 41 1,526 1861 F109151 0 41 1,500 1920. F111727 2.79 1,523 2055 F102869 000 1.523 2070 F101771 0.00 1,521 21 33 V102853 2.09 1,519 21.42 F115032 063 1,519 2238 FH11625 000 1,518 22.84 F101723 243 1.517 23.36 FH02767 000 1,584 2357 F113961 224 1,510 24.11 F115094 0.00 _ 1,538 24.73 F113921 1,02 1,462 2492 F113920 022 1.461 2562 V100450 898 1579 2591 J1726 0-13 1.577 26.71 V108930 073 1,507 26.91 FH10826 000 1,624 2736 F112152 2,19 1.506 27 41 F105981 0 77 1,510 27 50 V108568 0.72 1.505 2786 F115030 1 66 1,505 27.88 F103824 027 1,621 28.81 V111367 033 1.619 29.76 F114154 0.13 1,618 30.24 F105891 166 1.497 31.42 F105494 0.13 1,487 3150 F105890 149 1.496 3157 F101473 1,56 1,495 3219 F115093 0,00 1.522 3251 F106265 1,54 1,491 3296 F112927 0.41 1,495 33.09 F115028 322 1,492 33.23 F112758 0.41 1,489 3325 F113919 055 1,443 33.53 F114401 0.41 _1,492 33.80 F116370 041 1,486 33.99 F114597 098 1,485 34,16 F101630 374 1,489 35,13 F111729 131 1.489 35,14 F105578 225 1,472 35.27 F108455 056 1 483 _ 35.37 F108454 077 1.483 35.37 F101948 203 1.482 35.57 JB42 0.41 1,488 35.59 F101749 118 1,487 35.81 F113310 0.38 1.471 35 89 F105971 064 1.481 35,97 F117050 Demand 013 _ 1,573 36.24 F118113 041 1.481 36 24 F117327 000 1.484 38.33 F112767 343 1,483 3635 F116394 000 1.483 3643 F117410 0,00 1,483 3647 F117931 000 1.483 3649 F105725 1 02 1,487 3655 F117111 0.00 1,484 3662 V106606 1.18 1,483 36,63 F101952 228 1,480 36.66 F101768 0.57 1,464 36,79 FH14189 0.00 1,483 3682 F114156 15.53 1.595 36.83 F110926 1.01 1,484 36,85 F118021 013 1,479 36.86 F110278 1 69 1,464 36 89 J1760 1.06 1,483 37.14 F102901 203 1,478 37.16 F101501 0.57 1.463 3721 F117026 0.00 1.,507 37.30 F101517 1 59 1,483 3740 F107393 1,23 1,485 3741 V105592 042 1,485 37,45 F117326 0.00 1,481 37.52 F113981 0100 1,481 37 64 F106543 0.66 1,481 3766 F106544 0,13 1.480 37.77 F101271 1,99 1,477 3778 F102036 0.73 1,477 3783 F114393 0,00 1.482 37.90 F104655 262 1,476 38,20 F117346 0.61 1.476 3820 F102591 0.63 1.476 38 28 F101204 054 1,476 3831 F101750 0.97 1,481 36.42 F101506 2.27 1,480 38.45 V107887 0.80 1,430 38.53 F101953 249 1,475 38.53 V103604 084 1,482 38.61 F118120 0.00 1,478 38.83 F113609 0,69 1,475 38,86 FH10236 0.00 1.549 38.94 F101956 1 18 1.474 3897 F114110 0.27 1,565 39-01 F106758 2.93 1.549 39.13 F118196 184 1.479 39 18 F104656 0.41 1.474 39 28 F114158 013 1,454 39.32 F106264 0.13 1.476 39.38 F105987 3.27 1.718 39 52 F116560 000 1.476 39.53 F101747 1 79 1,478 39 56 J2276 1.28 1.473 3959 F117109 0.00 1,477 3963 F101813 000 1,476 39.64 F101484 0.49 1,478 3971 F101954 1 56 1.473 39.73 F115872 000 1,476 39.85 FH11511 000 1,477 39.90 F106407 0 41 1,529 39.96 r K �tnr` ,LPI p! :��► 411@31141- ti y► af.,"{� M,P,ri Ian till - 1 _- �i.i PI, 1117 .-.r-aMM �iw, E c ��.-•wtt� Fr. fit Eiji i r — — .. LLJ Lu Lu z a 4 I �i LIKE E P A �11�1 NJ [v I M Lf Er ,� Flame yk i PI {t ++,IPI .� ilk rr� Al w �j . I �.41..41r rt r� mod rC�r } m' wa r• r hd 1y��+ 19 `� �. -��Im 1 • 1*4 p L F.: vi M Z O No N W J Q n t Z � N Z N J �] = X O J w W m p V J Q V �z ui d J Z acc w Q Z H O !r J U a o O J t Z U Iw q{YlY 91 A6%4 �x L ��Irt4r IlLid, PllWo o .. Z Ln 72 D Lli ;+on LU - E LU l_ c �r r mw I'veNam paw NIM Iiru � ci;1J1 far:..' m a it I �. "�t����"•� � ra.,� I.4�''�l�6 -los SIG"n`/1 i � WE41 NJ Ww �`awarwi:�i *02 �- 11� rfrj d P�.i I S; u"dulmij, V42 M, e 'Al i Rd n°. cr Z Z) 0 CO< —j + a- 11, Ln m C) 0000 toey �3h iba z o N � c >u � w F 9 6 W N m VTa^ Z N LLJ D —x — 0 m `^ w w LU LN H l� Q P 3•, Z vi vi vn Z 2 a QQ¢Q Q V + n In M IZ n In m O �d►0� Z c 0-0 . • `fir' a OPINION OF PROBABLE COSTS FAYETTEVILLE MASTER PLAN EAST FAYETTEVILLE IMPROVEMENTS DESCRIPTION QUANTITY UNIT INSTALLATION &I CONSTRUCTION MATERIALS TOTAL COST ILine EF -1 N. Gulle Rd- to Pro osed Tank & Pump Slation 18" DIP 3.800 LF $- 11000 $ 416.000,00 Tie at North End _ 1 LS $ 25.000-00 $ 25.000.00 Tie at Proposed Tank ✓S Pum . Station 2 LS $ 3,DOO.DO $ 6,000-00 FithM 3.000 LBS $ 8.00 $ 24,000.00 Fire Hydrant Assemblies 3 EA S 4,.00000 $ 12MO-00 18- Butterfly Valve 2 EA $ 6.000 -DO $ 12.000.00 IN Gully Rd Bore - - 1 LS $ 27,00000 $ 27,000-00 As haNConcrele Repair _ 720 LF $ 50.()O 5 11,000.00 Crave) Repair 100 LF $ 2500 $ 2,50000 Trench Sately System 1 L5 $ 3,000.00 $ 3,000.17D (Erosion Control System I I,5 $ 3,000.00 $ 3,000.00 Teskny, Dlsinlectlon, Dechlorinallon 1 LS $ 3,500.00 $ 3,500.00 Sublo al 1$n4 EF -2 P10 user! Tank I* fty2 45 $ 547,000.00 19' DTP -- - a,E,W I.F $ 110,00 S 506.000.00 - - __ - - _ - --. -__ Tie atTank - - 1- LS $ ._3.000.00 % - 3.000.D0 Tie SoU1h of 1AWy 45 1 LS $ 10,000-00 $ 14000,00 Fitttl 3,5W LBS $ 8.00 $ 28.000.00 Fire H drant Assemblies 2 EA $ 4,000.00 $ 8.000.-00 Ifir Burse Valve 2 EA $ 6.00D.01) $ 12.000:00 Mission Blvd Bore - - 1 LS $ 50,000.00 $ 50,000.00 As haNConcrete Repalr 200 I LF $ 50.001 S 10.000.00 Gravel Ru t -- - 50 LF 1 $ 25,00 $ 1.250.90 Trench SaJeW System - 1 LS $ 4,000.00 $ COMM Erosion Control System - I LS $ 4,000.00 $ 4.000.00 Testrig, DIslMectton, Dechbdnatkln 1 LS $ 4.011D.00 $ 4.000.00 V Tie at Chapel Yraw Drive 1 LS $ 17.000.00 $ 17,000-00 Subtotal Line EF -3 Saddlerld-Ektmel•Lamar Panus Dr. - $ 557,250.00 8" PVC 30,3tt LF S tM S 00.40D 190 Tlas to Exb6no 01stnibuVon 26Lom 5 EA $ 3000.00 S 15000,00 .Fire 1-i rant Assemblies - 3 EA 5 4,000,00 5 12,000.00 Gale Valve 4 EA $ 1,00041) S 4000:00 PleneltSalG S sicln 1 LS S 1.500,00 a 1.MoAn Erosiw+COTItrOl S. lefln 1 LS S 1.000110 S 100D.D0 Testi , Disinfection. DecNorinalkln 1 LS $ 2.000;00 $ 2,000.00 $ubiotnl 011ierIPlovemenis S 126,400.0D 075 -MG Elevated Tank 1 LE S 2,010,00ROD $ 2,010,000,00 Pu Station 1 LS Is 450,0110,00 $ 450000,00 Allaude Valve 8 Vault (Goshen -E, Paul Pray Dr.) 1 LS I 5 70.00000 S 70.000.09 Subtotal S 2,S301000100 TOTAL COST Above costs do not include engineering design, easement acquisition costs, legal lees. debt service, or other ancillary costs All casts shown rellect present value (2017 costs) and have not been adjusted for luluro inllation All costs are opinions for budget purposes based on best available inlor—lion, and actual costs may vary depending upon actual bids received $ 3,860,650.00 NZ F- Q N J Oa U W mW J � m N as Co OW DC J a J O> W z f- _OUJ� Z a� O - Z O F-00000 00 0 0 CD 0q 00 0 U)ooU.)uoo UNC �a U) 0 0 F- U w69frs6 ., o0000 0 0 0 0 0 ZN0000o 0 J T O o Lr) co Ln0 c7 O CV Ia J � as F- z F- Z ILL J Q W (n J co J Cn J H Z O N r T— a^ CV lc\l Q Z 0 d E o r U) C U E o NO W U 0 7 E 0 N iA V O 0 � � U O C « � y Q) C W � U U o U G N y C N N O N Ql � P: W I- to t wo mo U 0 b ca N H z Z N J Oa U S LU W a in Qz O J aWW W J N O W S zF- a Ow z� O U- '0 x N m O S O U) W m O S m 0 N N O U lD r a 3 x -o m 0 x m LA C x W Z o O o 0 0 0 0.•O O o 0 0 0 0 0 'O F000ciooci000000'oo 0 0 0 O O 0 0 o O 0 0 0 0 0 0 U) H 00000 CD O O O o'O C)0CD0 0 0 0 0 0 0 Lf) 0 LI) 0 000 •O O U C6 O co o N N Ln O •Ln O CV rl: 4 Ni Ln cc J 00 Ln C-) — c)M u)LI) — H Q 'N H O 0 U ER eel W ip 4f) E9 {#3 H4 64 6s w ff3 fl6s 696%1 613 od o O o 0 0 0 0 O 0 0 0 0 0 o 0 o a 0 0 0 o 0 0 o O O O O 0 O ZNOoobo0a000w000 O J Q r r•0 0 0 OO 0 0 00000 0 0 0 0 Ln N O OOO O O O M C6 O' 46666 Lr) CO 4 4 Lii J W J F. Q Q H N Z w 69 af'. ufo H3 fA {33 f+9 ,9 69 W &fl fe W ER ~ L CaWlcn0 QQ 000U-U-0ww Z J.JJ.Jm W W W JJJJJ JJ H Z •0 :� r r 0 OO M M N r r 00— r rQ <Or N M Z O F- a. . m LL Cd U> N c 06 W 0 - a E 0 o E 0m CC C o N 3 h>> O-0 > (n U 70 w j O m S .N- j o m C W O > In m U C m --. C C T -6x C— m ON�U CD mcnUo _N CL W M— W � �, >— N m m m �� c 0 2 m m Stc 3 m m > 0 0 c r�Hl—iLiL-co m o m+"_ Q2(n¢C7H O a ca cin' (D O,w WH ?A U a) a ami 0 c 0 Z 000000000000.0 c7 H 0 o 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 oo 0 CD o 0 •0 C) 0 _O 0 H OCDo0000LO00000-0 0 0 0 0 0 0 0 0 0 0 0' 0 0 0 U�r NEDN�E70Cl)Cl) 7� J (n Ul H Q •N H .Z O •O �- U to ss en u3 d), v w U1691%.1010 6 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 Z Noo00coo6660000' 0JED00o 000 00000000 0En000000 Q r N ED 4 6 6 do 6 "i 6 4 Cl) Cl) .Q.I W J ~ Q �a � N Z {3 H9 fi3 d9 2f3 •Efl ER -y9 EO (fl f» U3, W Cl)Z ti ~ ILL [nowLo<QQ(n(AU)U)lcn Q Z J J J J W; W i W J J J J' J N J > J m c U2� Lr Ea = � > 'oLU W N �. 0 yra m J c ,N Q Z M Z °c O J N Q •CD M aNi a) W-J d = > N w J Q co LLL 9 Q W ° m H z a r O H 01 a as O U. LL j N � 6 m � > d > E n 'm O N d � N m N O _ C C U 7 l] m 0a. O V d o o V Q .° C L fl N U O Lij�m 0 C r ID Ew U U) m EW Y 'Q O N a C> r m N y C O o a) a C n N cd O C Y° > O U > W N = Q > > ° o O O C'N � '-° m E 0 N dU W j to INCm'.mU)U��p N m N L N o (n fU 7 y 0 n C p O7 <3 O m U U d1 Id N W C= m om O 'N — (R � s b ,N g .T - H• - 1- IL Q o ° c"d Nz F - (J) N ^ 0_1 a J W N 3 a az LY1 OWJ (D CL J W U) LL O>a 0 Orcin W Z > as OLL Z 0 0 0 0 0 0 0 0 0 0 Cl 0 0 0 0 0 0 0 0 0 0 no, 10, O F- 0000000'000ca 16� (n000o0o00000lo F' 00000Ocno'o0oc�oI i U V r Op qj w I� 00 ', CD N N N J dam' N U) H Z O O F- U�e3erae.3er}�03, Go u�csrs3 00000 no 0 o a 000000o o 0 00 0 0 o Z N000ai0 00000no JQ CO O 00 O O Own Q O Ln N O 000l O O _0 J rc r 6 4 CV L6 N N N W J as z rri a9 ea b9 rt3 v9 &s rr9 t�5 s,4 rf3 Ns ~ Wcocow<<<iu-WcncnICO Z IILU W W-JJJJ.J F-- Z ® r r O p't Cq N 0 p O 0 r a N M p7 r d Z 0 p a C ° U o N L w D N n*EE v E C� Cr Cw N C p I- a) Lr Q>j C a O N 0 Z H O 0 o O 0 0 O 0 o O 1 0 0 O 0 o _O (n L) O 0 O .0 IR 0 CO :0 N 0 D V 00 -0 �a z o F- C) o 169 69 U) V» ots !00000 o O O O o Z N 0 0 00 0 OJ 0 O 0 M 0 N' o lA _ r to J R' W J as z ,V�Q0696960 Z J UJ J J J U)Q Oa O D U t WM W J L m N W N � m Q Z 0 ^2 J r Z a 0 ti N f -J -.r a CL LJN N O a o zra E z} aQ OU a Z d E a) o � N m c Uin o W C U Q 7 E m 4�+ 1!J N O NU) Ict 2 C •� UW'fUO O U • 0 CL. N N RD N W'- O _c N H W C a O N 0 Z 0 0 c. 0 O w o'gogoR a o d o a o .�0ILq:f3N IN lLn . k U aE.e @ to ad 00000 R 0Ro@ 2�000do 0 LO C) Lt) w & J LLI Q . Q U) +aaam �§k e I� _0 _0 So \ � / {\\ z ;\ F- E < f COz Lo m_ a) « cc LU - a.-i5� o - _ k��k /\) 2§ o k \ 0 'S 04 > \)°a }�\ \cl 2U O Cl = a CL $ 0 Q 2 a) -C O S ° - _ o \ _{ .k��0� <\ 6` \� /-\\%U ?c \ » 2kk�2 L) Ox- caQ 0\ >-oai- o %¢2§\/\2 aEwee )|\§ Z 000000 Owad 0000Ro eeod �P:O\q\&\\ �O& U) k O. E Q m«e -be a¥ Od 000ao 0000q 2nwdeeo LO0000 ^ ^ R � J� ._ w �« Q � 2 �m a_e:_ F- L \I 2'S R q� 6)\ L): LU \ CO \ z ] m - _ 0 - m « m R 2 U) \)\ LL 0 2 LU � - , C_§ / X:\) o U.C) m En /) 0� EL 2 a, = O 2 a� §�� \ \ k ( 0 \ \\\\S . k�e t \ \ \ a k U \ 0 >1 £ 2» j/m& $ / j a e % )+ Q o. c a U Q\ > o0c- _ ° ® ° _ _ 3 § 2 ! @ @ e q & to p.wl e E \ b) Z o00•o0o 0 H 0 o0 0 0 0 0 o 0 0 0 0 0 0 _O 0000 [v_ Itm L) C\j a z O OH U dv 69 ba 4A Ea Efi tri pa 000 00la) O O O O O i D z N o 0 0 0'o 0 O JLn0000C) Lo 5 -t d J W J � as cn J W W J J -c U)J O d ? .J U U v c W �' LD Ly.. LU O N M N W L N m E Q Q Z i m�J Q Z�;D 'ct N ,-- r f o � c o a N C cr W 0 N N > N J W a.-j c LLC C3 n s .M > OW= -� -0 m IL m 0 F- o o Z } U o o �_ Q LL > N N j N � N N O a C > 2 - ECEM N a N N Z C O N a .p O c m � � a s 0 m C C C m 30 0 U W o L N Q W C o U m m (b C O U U rE .0) �CC y N 07 C t�l1 cn O U U Ul U - in Q U) y O C Cizf c o xC Cc 0 Cd y0.� L�Oy cOU0 1--- Cy N +- N O o 0 U)2 00. LLII§ 0 a.-Jw -in b�= 0 rL zLLJ oLL 2 6 2 . \ 2 CD k G Lf) ƒ k � 2 :O R o o'cggq a o ao Co 0 o.o 0 �b7$Lnq Lr) . \z 10 O w U_m__U�- m o ogogo 0 0 0 0 z 0Co000 0 « U-) J UJ - « � m 5I U) q � . k CU � 0 2 O E / Q . m 2.$ \ O $ t]( acn IU\ Lu (n a_of& o = c o _ ® 'CO) % � f + N Z H Q N J OLU a U S r J W - M uj W Q Q Z m � J IrW (L LL, o>a LU za _OW Z >- oOLL W z OOOOOOOoO000OIo; 0 0 0 0 0 0 O O 0 0 0 0 0 lO F- 0 0 0 0 0 0 0'0 0 0l o 0 0 0 _O Cl) OOO0000000LnoOoun o 0 0l0 0 0 0 0 0 0 0 0 0 �o U UCO CRNN0N0O0 It X)N�* "It .-e.I cr. J Ln r .- r CO r r LO r fA F- zO OF - U rA69Ee 60V3,eq »ea64u3r%45qU41t6. of :o:000n0000O000O �o•0000000 000.000 Z �0000ctiooCOCuicoo O J�000 rOOo 000 OOo nmN•000 o RCiLq Q LV(V0, ItLOU)LO d LU J W J � a �a c Z +Ff3 Ff9 fig ffl Ef3 ffl EFT ffl fH ffl E9 .� fn 69 ~ LLCO CO C/)Q ¢ ,Cc LL Co cn (n Z JJJJmiW WIW J -i -j Z O r r r O 010,N N r l O r r Q N N Q Z O C IL m > to FE c V1 c W D - _m L coE m ❑ LL E c C Q o R C b0 > m UZ i� a += C y— Q. C f` _ m � cD C OO U m C U •N Q a x W Rs H •- a s � j m ?-6 fA t ❑ miu o cSCo a� 3: 3L C3 c m N m � �_ L _ y C m (7 2O N H p IZ it ,- Q 2 Q C7 F- W F- z a N J a � O w ° UST U)) J a — E cc LuN IIIz Of-Jf- cc a = w a W 0Wac O > a In Z W a� a Oy a LL Z CD 0 O 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 O OC? o O 0 o 0 0 0 O F-�ca00000000Li0000u U/) 0 0 aoo 0 0 0 000000 0 0 0 0 0 Inoo0o0 0 0 0 0 cv U O 6666Ltioouioiaca6 6c4 V C4 � LO N CO M N V� N L� T T M1 J C4 N. Q L'I zO O �. U vlr V'3 t19, 69 6f3 (Et H3 ie3 it! 6% to E9 Efl tfa Fa3 6�i 66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 z N It 00 0 0 0 0 m O O O O O O O O O O O O m f� 0 O 0 O 0 O 0 O to N O J c000 0000.0 N NOOOto Q 66 c) V 6 6 to r 00 Lr) (C CD N Il - Q � r J W J � Q Q N z — .t29 W W tf! 6c ai3 6E i� 69.1-V3.1 613 6016,16") Ffi •ei F - •LL Q Q '� Q 'Q Q LL LL ILL LL ,LL U! to U) . o Z J W W9 W IW W J J J J J J J J J 7 o LO 0 CD z 'OD 0 M 0 'cY M 00 N N N N N T Q iLO LO v z O `_ r a U a N LU Ed m ,.a N O. NEmmca co N C CIOQ o w In co o ° o o la ,U to w20-3�'��V°)L�c=i c:U"�3 c 00 a .� a� o .� .a to y .� m o d >HLLLLMQ 710Q a OWll- KT 06 <V tr> d 0 t 0 s W N d Y m m J Z N J o O a � L) N m Jcc W = W m H W Q Q Z L.: 0 J Fx W = y LL J N 0 LU io ZO aLU ~ Z } � LL o O 3 a cc m W Z CDC 0 0 0 o 0 o o'O o o O o O o o o 0 0 0 0 0 0 0, 0 o00000'0[ao0000 � fA 0 o0000000minoom 0 0 0 0 0 0 0 0 0 0 o O i v 0 LLiNNONNOON n4d� cr. J N F- O� U 1ca $4 Fg E9 if3 V3 ffl, 69 fR a9 ff) 6F! Ef3 0 0 0 0 o:O 0 O o o 0 O 0 o 0 0 0 0 0 0 0 o 0 O 0 0 Z (n 0000000o6ouioo0 :000 OOOLON 000 O 000 000 00'u] poiN 0 r Kt Lf) Lf) It Kt It F J W J ~ Q Q F- N Z 69 69 V 69 169 6a 69 '111 69 E9 WFa ~ J- (D W CD U)< <Q LL ILL Cl) im•Cn Z J J J J m I W W W -i J J. J J F - Z o � r r O 0 0 N N Lo O r r Q V N C7 Z c C) O cz () > L U c m' mN E Ui W c E o n 5 �, c o 0ILL y > > > U) _>+ Q > 5 > 2 Ci _ m W C .. C— y C c d y r roa - a� U) C) 0 0 LLdwv (6 cd� aim �L > c oF-1-HlLIlLD A .200QQ(3F-W N = f0 c,M � H n2 e« oa C)LLI CL mLLj «« o� CCW CL -j bLU 0� z> a� 0 U) z LU 2 > 0 � § & 2 Owaosoddo %08\2\22 L) 0 U) k 0 O U 0000000 _mnma0e 4 cli . a000%oc =RRRRog 2Cne000000. .O-98\0\\0 '22 ¥n W - e « Q co »m_m+em != \3 cnm< Cl) zuuuLu=u= � L \ . � 0 2 O w a G - � \ � o . % / m Q ZD E.% \ C(n 8££_25 S? 2@®foE 2n g n u= c e »##22§3 (D S E E § LL It § cli IN m N Z h a CO o J Oa U CC W W J h m N as m� OW CC J CLLL J O> W Z OW Z Q aLL N h Z W W o a CCC 2 L N W E z LU a N Z J CL o W C y CC J c En J CC O CL 3 CL a� U N Z O h Z 000000 0 0 0 0 0 0 _Oh000000 in I" O Lr) C 0000Lo o C LO LO i. U Vaivr� T � J fn h z Oh U 61 eq, v) 69 u) dS :0!00000 0 0 0 0 0 0 Z NLD00000 OJ`o0o0orn 0 o u) Ln t- J � W J a Q F -5 (J) Z �cfs F- Z ILL J J J J J J D F- Z 0 0 T r T a Lo Z O H o C V O VI L W Q E N C] P J o U %O m o o o C W d- U fN U U) UZCOt m > f8CL C y N m O cOFF-h Wh m N N U � N C N U1 L a� m � m � ro L C), 73 C m N Y o N V O C U o � N O �j N m C> N Y E ro N N m � g _� ry (D C CDO N L d m C N CY' o O7 U a Q U ui c w 0 0 0 o c a q y Y U N C 0 _ U -o 0 F Q o m c b C 0 a > m ro U N O CL 0] a CLC N Z m CCE .N. U ro m Project: Fy-363 Fayetteville Water Master Plan Engineer: McGoodwin, Williams and Yates Fayetteville System School/Hospital li i re Flow Analvsis Calculations Fire Flow Requirements Source: International Fire Code Appendix B Fayetteville School System Root Elementary • Required Fire Flow = 3,500-gpm @ 3 hours • Fire Flow w/Sprinkler Reduction of 75% = 875-gpm • Per IFC code, fire flow not less than 1,500-gpm @ prescribed duration (i.e. 3 hours) • Available Fire Flow Results: o Fire Node ID — F101777 (Mission Blvd.) o Flow = 2,305-gpm @ 20 -psi Butterfield 'I'l-ail l".1villent-11-y • Required Fire Flow = 4,250-gpm @ 4 hours • Fire Flow w/Sprinkler Reduction of 75% = 1,062.50-gpm • Per IFC code, fire flow not less than 1,500-gpm @ prescribed duration (i.e. 4 hours) • Available Fire Flow Results: o Fire Node ID — FH10048 o Flow = 6,058-gpm @ 20 -psi o Fire Node ID — FH02466 o Flow = 5,829-gpm @ 20 -psi Happy Hollow 1,1enient_ar_v + Required Fire Flow = 4,250-gpm @ 4 hours + Fire Flow w/Sprinkler Reduction of 75% = 1,062.50-gpm • Per IFC code, fire flow not less than 1,500-gpm @ prescribed duration (i.e. 4 hours) • Available Fire Flow Results: o Fire Node ID — FH14130 o Flow = 3,732-gpm @ 20 -psi o Fire Node ID — FH14132 o Flow = 3,864-gpm @ 20 -psi o Fire Node ID — FH14133 o Flow = 4,155-gpm @ 20 -psi 0,,fl Creek Elementary • Required Fire Flow = 6,000-gpm @ 4 hours • Fire Flow w/Sprinkler Reduction of 75% = 1,500-gpm • Per IFC code, fire flow not less than 1,500-gpm @ prescribed duration (i.e. 4 hours) Available Fire Flow Results: o Fire Node ID — FH03247 o Flow = 6,316-gpm @ 20 -psi o Fire Node ID — FH03248 o Flow = 6,923-gpm @ 20 -psi o Fire Node ID— FH14662 o Flow = 13,400-gpm @ 20 -psi • `'`Fire Flow Results w/maintaining 10 -psi at system critical node(s): o Fire Node ID — FH03247 o Flow = 55-gpm o Fire Node ID — FH03248 o Flow = 53-gpm o Fire Node ID — FH14662 o Flow = 57-gpm *Cri cal Area _- Dinsitiore Trail (ire..x% located on 2" w eterai€ e) lolcoinb Cleinentarry • Required Fire Flow = 3,750-gpm @ 3 hours • Fire Flow w/Sprinkler Reduction of 75% = 937.50-gpm + Per IFC code, fire flow not less than 1,500-gpm @ prescribed duration (i.e. 3 hours) • Available Fire Flow Results: o Fire Node rD — FH10273 o Flow = 4,595-gpm @ 20 -psi o Fire Node ID — FH02567 o Flow = 6,462-gpm @ 20 -psi II • 'Fire Flow Results w/maintaining 10 -psi at system critical node(s): o Fire Node ID — FH 10273 o Flow= 121-gpm o Fire Node ID — FH02567 o Flow= 122-gpm *Critical Area — Dinsmore Trail (areas locates n 2" wak ra ine) Washington 1',Iellicillary • Required Fire Flow = 3,500-gpm @ 3 hours ■ Fire Flow w/Sprinkler Reduction of 75% = 875-gpm • Per IFC code, fire flow not less than 1,500-gpm @ prescribed duration (i.e. 3 hours) • Available Fire Flow Results: o Fire Node ID — FH11337 o Flow = 5,952-gpm @ 20 -psi o Fire Node ID — FH 11404 o Flow = 3,695-gpm @ 20 -psi Asbell Elementary • Required Fire Flow = 3,750-gpm @ 3 hours • Fire Flow w/Sprinkler Reduction of 75% = 937.50-gpm • Per IFC code, fire flow not less than 1,500-gpm @ prescribed duration (i.e. 3 hours) Available Fire Flow Results: o Fire Node ID — FH02188 o Flow = 10,290-gpm @ 20 -psi o Fire Node ID — FH 11284 o Flow = 8,792-gpm @ 20 -psi Leverett Elementary + Required Fire Flow = 2,750-gpm @ 2 hours • Fire Flow w/Sprinkler Reduction of 75% = 687.50-gpm + Per IFC code, fire flow not less than 1,500-gpm @ prescribed duration (i.e. 2 hours) • Available Fire Flow Results: o Fire Node ID — FH 11739 o Flow = 9,623-gpm @ 20 -psi McNair Middle School or Vaaudergrift Elementary • Required Fire Flow = 4,000-gpm @ 4 hours • Fire Flow w/Sprinkler Reduction of 75% = 1,000-gpm • Per IFC code, fire flow not less than 1,500-gpm @ prescribed duration (i.e. 4 hours) • Available Fire Flow Results: o Fire Node ID — FH 12101 o Flow = 2,205-gpm @ 20 -psi o Fire Node ID— FH 12062 o Flow = 1,658-gpm @ 20 -psi Holt Middle School • Required Fire Flow = 5,000-gpm @ 4 hours • Fire Flow w/Sprinkler Reduction of 75% = 1,250-gpm • Per IFC code, fire flow not less than 1,500-gpm @ prescribed duration (i.e. 4 hours) • Available Fire Flow Results: o Fire Node ID — FH12049 o Flow = 4,308-gpm @ 20 -psi o Fire Node ID — FH12048 o Flow - 5,873-gpm @ 20 -psi • *Fire Flow Results w/maintaining 10 -psi at system critical node(s): o Fire Node ID — FH12049 o Flow= 120-gpm o Fire Node ID — FH 12048 o Flow= 120-gpm *Critical Area — Dinsniore. 'mail €, r•eas located on V -waterline) Woodlandjr. High Required Fire Flow = 41750-gpm @ 4 hours • Fire Flow w/Sprinkler Reduction of 75% = 1,187-gpm • Per IFC code, fire flow not less than 1,500-gpm @ prescribed duration (i.e. 4 hours) + Available Fire Flow Results: o Fire Node ID — FH 11955 o Flow = 2,640-gpm @ 20 -psi o Fire Node ID — FH 11919 o Flow = 1,726-gpm @ 20 -psi Raman Jr. High • Required Fire Flow = 6,000-gpm @ 4 hours • Fire Flow w/Sprinkler Reduction of 75% = 1,500-gpm • Per IFC code, fire flow not less than 1,500-gpm @ prescribed duration (i.e. 4 hours) • Available Fire Flow Results: o Fire Node ID — FH 11319 o Flow = 68,307-gpm @ 20 -psi o Fire Node ID — FH 11321 o Flow = 79,023-gpm @ 20 -psi o Fire Node ID — FH 11322 o Flow= 74,438-gpm @ 20 -psi • Fire Flow Results w/maintaining 10 -psi at system critical node(s): o Fire Node ID — FH11319 o Flow = 2,076-gpm o Fire Node ID — FH 11321 o Flow= 1,882-gpm o Fire Node ID — FH 11322 o Flow= 1,778-gpm *No € ritaeal a$i'Las� Due to exti°€ rpelr hargi available flows, to el—Ify i"'b'_nmining system pr(-,.ss°3ires Bti$'rm adequate daring fire filo v, Fayeiteville )Mich • Required Fire Flow = 6,000-gpm @ 4 hours • Fire Flow w/Sprinkler Reduction of 75% = 1,500-gpm • Per IFC code, fire flow not less than 1,500-gpm @ prescribed duration (i.e. 4 hours) • Available Fire Flow Results: o Fire Node ID — FH 12319 o Flow = 4,305-gpm @ 20 -psi o Fire Node ID — FH 14350 o Flow = 15,205-gpm @ 20 -psi o Fire Node ID — FH 14351 o Flow = 19,836-gpm @ 20 -psi + *Fire Flow Results w/maintaining 10 -psi at system critical node(s): o Fire Node ID — FH 11319 o Flow = 3,638-gpm o Fire Node ID — FH 11321 o Flow = 3,704-gpm o Fire Node ID — FH 11322 o Flow = 3,674-gpm *No critical area& Due 14) large available 1'la w%, additional analysis performed red to verify rerrraining system pressures were adequate during ire flare, Greenland School System Greenland School Site JINvv. 711 + Required Fire Flow = 6,000-gpm @ 4 hours • Fire Flow w/Sprinkler Reduction of 75% = 1,500-gpm • Per IFC code, fire flow not less than 1,500-gpm @ prescribed duration (i.e. 4 hours) • Available Fire Flow Results: o Fire Node ID — FH11724 o Flow = 2,182-gpm @ 20 -psi o Fire Node ID — FH11726 o , Flow = 2,210-gpm @ 20 -psi o Fire Node ID — FH 11723 o Flow = 2,149-gpm @ 20 -psi • *Fire Flow Results w/maintaining 10 -psi at system critical node(s): o Fire Node ID — FH03247 o Flow = 769-gpm o Fire Node ID — FH03248 o Flow = 782-gpm o Fire Node ID — FH14662 o Flow = 758-gpm ,"Critical Areas _... Wallin Mtn. Rd. (all areas ahove l,; 0iV elevation) --• Customers south of W. llm-n Street (i.e. %V� Circle Dr- Scots: Ave— Shadtw Dr., Path'Frail, West and South Napier Dr,i Farmington School System .Jerry `.Pop" Williams Elementary • Required Fire Flow = 3,250-gpm @ 3 hours * Fire Flow w/Sprinkler Reduction of 75% = 812.50-gpm + Per IFC code, fire flow not less than 1,500-gpm @ prescribed duration (i.e. 3 hours) + Available Fire Flow Results: o Fire Node ID — FH02857 o Flow = 5,613-gpm @ 20 -psi + "Fire Flow Results w/maintaining 10 -psi at system critical node(s): o Fire Node ID — FH02857 o Flow= 1,217-gpm *Critical Area — Dinsmare 'I aril (areas located on " waterline) Farmington School Site I Double Sprinm,s Rd.) • Required Fire Flow = 6,000-gpm @ 4 hours • Fire Flow w/Sprinkler Reduction of 75% = 1,500-gpm ■ Per IFC code, fire flow not less than 1,500-gpm @ prescribed duration (i.e. 4 hours) ■ Available Fire Flow Results: o Fire Node ID — FH02397 o Flow= 1,162-gpm @20 -psi o Fire Node ID — FH02398 o Flow= 1,140-gpm @ 20 -psi o Fire Node ID — FH 10450 o Flow = 2,198-gpm @ 20 -psi o Fire Node ID — FH14506 o Flow = 2,689-gpm @ 20 -psi • Tire Flow Results w/maintaining 10 -psi at system critical node(s): o Fire Node ID — FH03247 o Flow= 1,177-gpm o Fire Node ID — FH03248 o Flow = 1,177-gpm o Fire Node ID— FH 10450 o Flow= 1,103-gpm o Fire Node ID - FH 14662 o Flow= 1,182-gpm "Critical Are as - Dinsmore rail f aar as located Olt 2" Waterline) - Archie Watkins Rola Miscellaneous WashinOon Regional Medica) Center • Required Fire Flow = 6,000-gpm @ 4 hours • Fire Flow w/Sprinkler Reduction of 75% = 1,500-gpm • Per IFC code, fire flow not less than 1,500-gpm @ prescribed duration (i.e. 4 hours) • Available Fire Flow Results: o Fire Node ID - FH02182 o Flow= 8,531-gpm @ 20 -psi o Fire Node ID - FH02183 o Flow = 8,856-gpm @ 20 -psi o Fire Node ID - FH02184 o Flow = 10,510-gpm @ 20 -psi o Fire Node ID - FH02185 o Flow = 9,345-gpm @ 20 -psi o Fire Node ID - FH02186 o Flow = 7,206-gpm @ 20 -psi • "Fire Flow Results w/maintaining 10 -psi at system critical node(s): o Fire Node ID - FH02182 o Flow= 1,302-gpm o Fire Node ID - FH02183 o Flow= 1,301-gpm o Fire Node ID - FH02184 o Flow= 1,302-gpm o Fire Node ID - FH02185 o Flow= 1,312-gpm o Fire Node ID - FH02186 o Flow= 1,325-gpm *Critical Area - linsinorc 'f rad (areas located or, " w ak-Hine) University of Arkansas Medical Science • Required Fire Flow = 6,000-gpm @ 4 hours • Fire Flow w/Sprinkler Reduction of 75% = 1,500-gpm • Per IFC code, fire flow not less than 1,500-gpm @ prescribed duration (i.e. 4 hours) • Available Fire Flow Results: o Fire Node ID — FH11658 o Flow = 12,434-gpm @ 20 -psi • 'Fire Flow Results w/maintaining 10 -psi at system critical node(s): o Fire Node ID — FH11658 o Flow = 3,907-gpm "No critical ares. Due to large available 'low, additional analysis perrormed to veri~ reraaaining systern pressures were aidequate during fire flow. O[MO�0=0 fes] 0 O�LaLL M giReefinq 4CaHfimsCrYates v�7t C V�O ° `l7OO IC�iv Engineering Cantidence 302 E. Millsap Road Fayetteville, Arkansas 72703 Phone: 479-443-3404 FAX: 479-443-4340 Fayetteville Water Master Plan Existing Water Model Revisions/Updates City of Fayetteville, Arkansas MWY Project No. Fy-363 August 4, 2017 The following memorandum outlines the changes that MWY performed to the City's existing hydraulic water model that was calibrated by others in 2015. The revisions are based upon city GIS data regarding distribution infrastructure (i.e. pipe, valves, hydrants, etc.), city customer billing records (i.e. customer usage, address geocoding), field work (i.e. model calibration) and discussions with city water staff regarding tank/pump station controls and system operations. 1.0 Wafer Model Infrastructure Updates The 2015 water model was constructed by others from data provided by the Fayetteville GIS department. The data (i.e. shapefiles) included waterline locations and attributes as well as valve, fitting and hydrant locations. These shapefiles were imported into the InfoWater software to create the hydraulic water model's waterlines and nodes. Pump stations, water tanks, system controls and demand data were provided by the City and input manually into the model. MWY received a copy of the 2015 water model from the City, and per the Agreement updated and utilized the updated model for the water master plan. The 2015 model contained approximately 31,700 pipes and 30,700 nodes. Due to the large size of the model, the speed of running hydraulic scenarios (i.e. fare flow, water quality and future improvements) was decreased dramatically. To mitigate this issue, MWY requested and received permission from the City to "scale" down the model. This was accomplished by removing superfluous pipe segments and/or nodes that were not vital to the day to day operation of the water system or the hydraulic model. For example, when the 2015 model was created from the City's GIS, the InfoWater software converted the valve, fitting and hydrant shapefiles to nodes. This resulted in some pipes having more nodes than what was necessary to replicate field conditions. By removing these unnecessary nodes, MWY was able to reduce the overall model size and still have an accurate representation of the distribution piping (see Example No.1 and No.2). Technical Memorandum No.1 TM -1 Example No.1– Piping Pre -Node Removal 6" Waterline 5t,rt Lo ulse S W Louis • jII 4 3 � • i N E 4 Segments 6" Waterline End e St X" Al Nr M1 Example No.2 – Piping Post -Node Removal 6" Waterline a 9 O In Ls VA 1 Segment W Loulse St 6" Waterline End I T4 79! ]41 fR11! � 1� J� I Technical Memorandum No.1 TM —.2 The 2017 Fayetteville water model now contains approximately 13,580 pipes and 12,456 nodes. By scaling down number of pipes and nodes, MWY has discovered that the model speed has increased without diminishing its capabilities of replicating the day to day operations of the water system (see Section 5.0 "Development and Verification of the Hydraulic Model" of Master Plan). MWY also added any waterlines that had been installed in the system since the 2015 water model was delivered to the City. Other items that were updated and/or reviewed for accuracy are shown below: • Pump station and water tank controls • Flow/pressure settings of all flow control valves (FCV) and pressure reducing valves (PRV) • Location of all closed valves in system • Any system or operational controls unique to the Fayetteville distribution system Section 6.0 of the Water Master Plan report contains more detailed information on all infrastructure included in the updated hydraulic water model. 2.0 Customer Billing Records Customer billing data for the years 2010 to present was also requested by MWY. The customer billing data, along with Fayetteville daily demand data obtained from Beaver Water District (BWD), was used to determine the existing average and maximum day demand to be used in the model. The billing records were also used for geocoding. Geocoding is a process in which demands are placed in the model at the approximate location where they occur in the system (see Section 5.0 of the Water Master Plan report). The usage data was also used to verify and/or create diurnal demand curves for the existing average and maximum day. Diurnal demand curves are an illustration of how system demands change each hour over a given day. 3.0 Model Calibration Once the model was updated to the current water system configuration and the existing demands were input, the next step performed by MWY was calibration of the water model. The Fayetteville water department staff and MWY conduced sixty-eight (68) static pressure tests and fourteen (14) flow tests at different locations throughout the City of Fayetteville's water service area. These tests were to be used to validate the accuracy of the updated hydraulic model. See Section 5.0 of the Water Master Plan report for more detail of the calibration process. Technical Memorandum No.1 TM -3 MCGOodwin Williams & Yares Engineering Confidence 302 E. Millsap Road Fayetteville, Arkansas 72703 Phone: 479-443-3404 FAX: 479-443-4340 MEMORA_N_�UTM No_2 Fayetteville Water Master Plan ADH Storage Requirements City of Fayetteville, Arkansas MWY Project No. Fy-363 July 25, 2017 The following memorandum outlines a discussion between ADH Chief Engineer Lance Jones, P.E., and Chris Hall, P.E. regarding clarification of water storage requirements for water systems. Specifically, MWY wanted to discuss the ADH's policy regarding minimum operational storage for system's during times of emergency. In previous water master plan reports, MWY has stated the following, "due to the increasing problems with water quality issues that distribution systems face due to the EPA (Environmental Protection Agency) Stage 2 DBP (disinfection by- product) requirements, MWY solicited assistance from the Arkansas Department of Health and Human Services (ADH) regarding the required operational storage for a distribution system in times of emergencies (i.e. line breaks, BWD emergency shut down, etc.). ADH recommended system storage equal to a typical average day usage to assist in mitigating the formation of DBP's and to assist in keeping water "fresh" in the distribution system. If feasible, the ADH also recommended redundancy in other areas such as power supplies (back-up generators, etc.) and/or alternate feeds from the water supplier." The information above was based on a 2011 conversation between MWY and the ADH. The recent discussion with Lance Jones, P.E., was to verify the department's current stance and to inquire about any additions, omissions, etc. to this policy. At the onset of the discussion, Mr. Jones stated that the following storage suggestions were more of a "rule of thumb" based on ADH's experience and observations (i.e. sanitary surveys, etc.) of the different water systems in the state. The highlights from the discussion are shown below: * ADH recommends storage capacity equal to the entities average day usage (24 -hr). It is important to note that the storage capacity must be usable storage. Usable storage is defined as the storage above the minimum water level of a tank that is required to maintain a pressure of approximately 20 -psi or higher in the system. Technical Memorandum No. 2 TM -1 ADH will allow for more or less than an average day storage capacity depending on the entities water system. The range stated was between 18-30 hours. • Total storage should not exceed 6-7 days; however, the recommended target range that entities should design for is between 3-4 days. Total storage is defined as the total amount of tank storage present in the system. The more storage present the longer it takes to turn over the water in the tank. • ADH strongly recommends that each entity work diligently to maintain system tanks (i.e. regular inspections, repairs, repainting, etc.) and to manage/operate their systems (i.e. pump and tank controls to promote water turnover, etc.) to prevent the degradation of water within the tanks. It is important to note that Mr. Jones stated that each water system has unique challenges and that what works for one may not work for other systems. He stressed the importance of managing and maintaining the water system to provide quality, safe drinking water to the public. Technical Memorandum No. 2 TSI - 2